Advanced Algebra I Class Note

4.6 Modules over a Principal Ideal Domain–Structure Theorey

11/27

Rational Canonical form of a matrix.

Fix an $n \times n$ matrix A over \mathbb{R} .

Let \mathbb{R}^n be a $\mathbb{R}[\lambda]$ -module defined by $\lambda u = Au$ for $u \in \mathbb{R}^n$.

We want to study the structure of \mathbb{R}^n .

Note

 $e_i = (0, ..., 0, 1, 0, ..., 0)^t \in \mathbb{R}^n$, where 1 is in the *i*th position and $1 \le i \le n$, is a basis over \mathbb{R} , but not over $\mathbb{R}[\lambda]$.

Lemma

 \mathbb{R}^n is a torsion $\mathbb{R}[\lambda]$ -module.

Proof

Choose any $u \in \mathbb{R}^n$.

Then $u, \lambda u, \lambda^2 u, ..., \lambda^n u$ are not linearly independent over \mathbb{R} .

Then $f(\lambda) u = 0$ for some $0 \neq f(\lambda) \in \mathbb{R}[\lambda]$.

Set $u_i = (0, ..., 0, 1, 0, ..., 0)^t \in (\mathbb{R}[\lambda])^n$, where 1 is in the *i*th position.

Then $\{u_1, ..., u_n\}$ is a basis of $(\mathbb{R} [\lambda])^n$.

Define a map
$$\eta : (\mathbb{R}[\lambda])^n \longrightarrow \mathbb{R}^n$$
 by $\eta \left(\sum_{i=1}^n c_i u_i\right) = \sum_{i=1}^n c_i e_i$.
Then η is a surjective homomorphism.

Hence $\mathbb{R}^n \cong \frac{(\mathbb{R}[\lambda])^n}{\ker \eta}$ as $\mathbb{R}[\lambda]$ -module.

Set
$$\begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix} := (\lambda I - A^t) \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$
.

Lemma

 $\{f_1, f_2, ..., f_n\}$ is a basis of $\ker \eta$.

Proof

Note $\ker \eta$ is a free $\mathbb{R}[\lambda]$ -submodule of $(\mathbb{R}[\lambda])^n$ with rank $\leq n$.

It suffices to show $f_1, ..., f_n$ are in $\ker \eta$ and are linearly independent.

Observe
$$\eta(f_i) = \eta\left(\lambda u_i - \sum_{j=1}^n a_{ji}u_j\right)$$

$$= \lambda e_i - \sum_{j=1}^n a_{ji}e_j$$

$$= Ae_i - \sum_{j=1}^n a_{ji}e_j$$

$$= (i\text{th colume of } A) - (a_{1i}e_1 + a_{2i}e_2 + \dots + a_{ni}e_n)$$

$$= 0.$$

Hence $f_i \in \ker \eta$.

Suppose
$$\sum_{i=1}^{n} h_i f_i = 0$$
 for $h_i \in \mathbb{R}[\lambda]$.

Then
$$0 = \sum_{j=1}^{n} h_i \left(\lambda u_i - \sum_{j=1}^{n} a_{ji} u_j \right)$$

 $= \sum_{j=1}^{n} h_i \lambda u_i - \sum_{i=1}^{n} \sum_{j=1}^{n} h_i a_{ji} u_j$
 $= \sum_{j=1}^{n} h_i \lambda u_i - \sum_{i=1}^{n} \sum_{j=1}^{n} h_j a_{ij} u_i$
 $= \sum_{j=1}^{n} \left(h_i \lambda - \sum_{j=1}^{n} h_j a_{ij} \right) u_i.$

Since $\{u_i\}$ is a basis, $\lambda h_i - \sum_{i=1}^{n} a_{ij}h_j = 0$ for all i.

Suppose h_r has maximun degree among h_i .

Then
$$\deg(\lambda h_r) + 1 = \deg(\lambda h_r) = \deg\left(\sum_{j=1}^n a_{ij}h_j\right)$$

 $\leq \deg(h_r)$, a contradiction.

Then $h_i = 0$ for all i.

12/4

Recall

Fix an $n \times n$ matrix A over \mathbb{R} .

Consider \mathbb{R}^n as a $\mathbb{R}[\lambda]$ -module determined by A.

We want to study the structure of \mathbb{R}^n as a torsion $\mathbb{R}[\lambda]$ -module.

Define a map $\eta: (\mathbb{R}[\lambda])^n \longrightarrow \mathbb{R}^n$ by $\eta\left(\sum_{i=1}^n c_i u_i\right) = \sum_{i=1}^n c_i e_i$,

where $\{u_i\}$ and $\{e_i\}$ are standard bases of $(\mathbb{R}^{(n)}[\lambda])^n$ and \mathbb{R}^n respectively.

Set
$$\begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{bmatrix} := (\lambda I - A^t) \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}.$$

Then $\ker \eta$ has a basis $\{f_1, f_2, ..., f_n\}$ over $\mathbb{R}[\lambda]$.

Choose invertable matrices P,Q such that $P(\lambda I - A^t)Q = \begin{bmatrix} 1 & 0 & & & 0 \\ 0 & \ddots & \ddots & & \\ & \ddots & 1 & 0 & \\ & & 0 & d_1 & \ddots & \\ & & & \ddots & \ddots & 0 \\ 0 & & & 0 & d_s \end{bmatrix}$

such that $d_1 \mid d_2 \mid \cdots \mid d_s$.

Then
$$P\begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix} = P(\lambda I - A^t) Q Q^{-1} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
.

Set
$$\begin{bmatrix} f_1' \\ \vdots \\ f_n' \end{bmatrix} = P \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \begin{bmatrix} v_1 \\ \vdots \\ v_{n-s} \\ z_1 \\ \vdots \\ z_s \end{bmatrix} = Q^{-1} \begin{bmatrix} u_1 \\ \vdots \\ \vdots \\ \vdots \\ u_n \end{bmatrix}.$$

Then
$$f_i' = v_i$$
 for $1 \le i \le n - s$ and $f_{s+i}' = d_i z_i$ for $1 \le i \le s$.

Hence $\frac{(\mathbb{R}[\lambda])^n}{\ker \eta} \cong \mathbb{R}^n$

$$= \mathbb{R}[\lambda] \eta(z_1) \oplus \cdots \oplus \mathbb{R}[\lambda] \eta(z_s), \text{ and } O_{z_i} = (d_i).$$

Fix $1 \le i \le s$, observe $\eta(z_i)$, $\lambda \eta(z_i)$, ..., $\lambda^{deg(d_i)-1} \eta(z_i)$ is a basis over \mathbb{R} , and $A\lambda^j \eta(z_i) = \lambda^{j+1} \eta(z_i)$ if $j < \deg(d_i) - 1$.

Note $A\lambda^{\deg(d_i)-1} \eta(z_i) = \lambda^{\deg(d_i)} \eta(z_i) = \left(\lambda^{\deg(d_i)} - d_i(\lambda)\right) \eta(z_i),$ with $d_i(\lambda) = \eta(z_i) = 0$, where $d_i(\lambda) = \lambda^{n_i} - c_{i(n_i-1)}\lambda^{n_i-1} + \cdots + c_{i1}\lambda + c_{i0}.(n_i = \deg(d_i))$
 $AS = S\Lambda.$

Then $S^{-1}AS = \Lambda$,

where $S = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \lambda \eta(z_i) & \cdots & \lambda^{n_i-1} \eta(z_i) & \cdots \end{bmatrix}$

and $\Lambda = \begin{bmatrix} 0 & 0 & -c_{i0} \\ 1 & 0 & -c_{i1} \\ 0 & \cdots & \cdots & \vdots \\ 0 & 1 & -c_{i(n_i-1)} \\ 0 & 0 & \end{bmatrix}$.

Definition

A matrix of the form Λ is called the rational canonical form of A.

Definition

Two $n \times n$ matrices A, B are similar if $B = S^{-1}AS$ for some invertable matrix S.

Example
$$A = \begin{bmatrix} -1 & -1 & -1 \\ 2 & 2 & -1 \\ 6 & 3 & 4 \end{bmatrix}.$$

$$\lambda I - A^{t} = \begin{bmatrix} \lambda + 1 & 2 & -6 \\ 1 & \lambda & -3 \\ 1 & 1 & \lambda - 4 \end{bmatrix}$$

$$P_{1} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda - 1 & 2 - 2\lambda & 0 \\ 0 & \lambda - 1 & 1 - \lambda \\ 1 & 1 & \lambda - 4 \end{bmatrix}$$

$$P_{2} = \begin{bmatrix} 1 & -2 & 1 - \lambda \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 3 - 3\lambda & (\lambda - 4)(1 - \lambda) \\ 0 & \lambda - 1 & 1 - \lambda \\ 1 & 1 & \lambda - 4 \end{bmatrix}$$

$$P_{2} = \begin{bmatrix} 1 & -1 & 4 - \lambda \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 3 - 3\lambda & (\lambda - 4)(1 - \lambda) \\ 0 & \lambda - 1 & 1 - \lambda \\ 1 & 0 & 0 \end{bmatrix}$$

$$P_{3} = \begin{bmatrix} 1 & -1 & 3 - \lambda \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 3 - 3\lambda & (\lambda - 4)(1 - \lambda) \\ 0 & \lambda - 1 & 1 - \lambda \\ 1 & 0 & 0 \end{bmatrix}$$

$$P_{4} = \begin{bmatrix} 1 & -1 & 3 - \lambda \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 3 - 3\lambda & (\lambda - 4)(1 - \lambda) \\ 0 & \lambda - 1 & 1 - \lambda \\ 1 & 0 & 0 \end{bmatrix}$$

$$P_{3} = \begin{bmatrix} 1 & 1 & -2 - \lambda \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -(\lambda - 1)^{2} \\ 0 & \lambda - 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$P=P_{4}=\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ -1 & -1 & 2+\lambda \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda-1 & 0 \\ 0 & 0 & (\lambda-1)^{2} \end{bmatrix}.$$

Then $P(\lambda I - A^t)Q = diag(1, \lambda - 1, (\lambda - 1)^2)$.

Hence
$$\Lambda = \begin{bmatrix} 1 & 0 \\ & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix}$$
.

Find Q^{-1} :

$$\begin{bmatrix} I & Q \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 & -1 & 3 - \lambda \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\longrightarrow \cdots \longrightarrow \begin{bmatrix} 1 & 1 & \lambda - 4 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} Q^{-1} & I \end{bmatrix}.$$

$$\begin{bmatrix} u_1 \end{bmatrix} \quad \begin{bmatrix} u_1 + u_2 + (\lambda - 4) & u_3 \end{bmatrix}$$

$$\begin{bmatrix} v_1 \\ z_1 \\ z_2 \end{bmatrix} = Q^{-1} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} u_1 + u_2 + (\lambda - 4) u_3 \\ u_2 - u_3 \\ u_3 \end{bmatrix} \in (\mathbb{R} [\lambda])^3.$$

$$\eta(z_1) = \eta(u_2) - \eta(u_3) = e_2 - e_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}.$$

$$\eta(z_2) = \eta(u_3) = e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

$$\lambda \eta \left(z_{2}\right) = A \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 4 \end{bmatrix}.$$
Hence $S = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & -1 \\ -1 & 1 & 4 \end{bmatrix}$ and $SAS^{-1} = \Lambda$.

Note

$$\eta(z_1) = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \ \eta(z_2) = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \ (\lambda - 1) \ \eta(z_2) = \begin{bmatrix} -1 \\ -1 \\ 3 \end{bmatrix}$$

is another basis of \mathbb{R}^3 over \mathbb{R}

and
$$(A - I) \eta(z_1) = 0$$
,
 $(A - I) \eta(z_2) = (A - I) \eta(z_2)$,
 $(A - I) (A - I) \eta(z_2) = 0$.

Hence
$$A\eta(z_1) = \eta(z_1)$$
,

$$A\eta(z_2) = \eta(z_2) + (A - I)\eta(z_2),$$

$$\begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Thus
$$A \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & -1 \\ -1 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & -1 \\ -1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix},$$

where
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
 is called the Jordan canonical form of A .

Note

If
$$\lambda I - A^t$$
 has simith normal form $diag(1, 1, ..., 1, (\lambda - 1) (\lambda - 2), (\lambda - 1) (\lambda - 2)^2 (\lambda - 3))$, then $\lambda - 1$, $\lambda - 1$, $\lambda - 2$, $(\lambda - 2)^2$, $\lambda - 3$ are elementary divisors

and the Jordan canonical form is
$$\begin{bmatrix} 1 & & & 0 \\ & 1 & & \\ & & 2 & & \\ & & 2 & 0 & \\ & & 1 & 2 & \\ 0 & & & 3 & \end{bmatrix}$$
 with respect to the basis $(A-2I)\,\eta\,(z_1),\,(A-2I)^2\,(A-3I)\,\eta\,(z_2),$ $(A-I)\,\eta\,(z_3),\,(A-I)\,(A-3I)\,\eta\,(z_2),\,(A-I)\,(A-2I)^2\,\eta\,(z_3).$

Note

 d_s is the minimal polynomial of A.

$$\begin{bmatrix} 1 & 0 & & & & & & \\ 0 & 2 & & & & & \\ & & 1 & & & 0 \\ & & & 2 & 0 & & \\ 0 & & & 1 & 2 & & \\ & & 0 & & & 3 & \end{bmatrix}.$$