進階代數第四次作業

2008.10.27 2008.11.03

1. SOLUTION:

 $S = \{ a \mid a \text{ is not a zero divisor } \}, S^{-1}R \text{ is the complete ring of quotient of } R.$

$$S = \{x \in \mathbb{Z}_n \mid (x, n) = 1\}$$

$$S^{-1}\mathbb{Z}_n = \{m/a \mid m \in \mathbb{Z}_n, a \in S\}$$

$$= \{m \mid m \in \mathbb{Z}_n\}$$

$$= \mathbb{Z}_n$$

because (a,n)=1 therefore at+ns=1 for some $s,t\in\mathbb{Z}_n$. Hence 1/a=t, because $m/a=mt\in\mathbb{Z}_n$.

2. SOLUTION:

利用 universal theorem, 造一個函數 $\hat{\phi}: S^{*^{-1}}S \to T^{*^{-1}}T$, 接著檢查 $\hat{\phi}$ 是否爲一對一且映成。

- onto: If $(a/b)/(c/d) \in T^{*^{-1}}T$ then $\widehat{\phi}((ad)/(bc)) = (a/b)/(c/d)$.
- 1–1: $\ker(\widehat{\phi}) = \{0\}.$

3. SOLUTION:

- a) In $S^{-1}R$, $\frac{b}{a}\frac{d}{c}=\frac{bd}{ac}$. (by definition) Suppose $\frac{b}{a}\frac{d}{c}=0$, then $\frac{b}{a}\frac{d}{c}=\frac{0}{1}$. Hence $(bd-0\cdot ac)s=0$ for some $s\in S$. Hence bd=0, $\therefore R$ is an integral domain. Thus b=0 or d=0. Then $\frac{b}{a}=0$ or $\frac{d}{c}=0$.
- b) $\bigstar \frac{b}{a} = \frac{b_1 b_2 \cdots b_m}{a_1 a_2 \cdots a_n} = \frac{b_1}{1} \frac{b_2}{1} \cdots \frac{b_m}{1} \frac{1}{a_1} \frac{1}{a_2} \cdots \frac{1}{a_n}$ For example, $R = \mathbb{Z}, S = \{6^k \mid k = 0, 1, ...\}.$ $S^{-1}R = \{n \ 6^k \mid n \in \mathbb{Z}, k \in \mathbb{N} \cup \{0\}\}$ $\Rightarrow S' = \{2^n, 3^n \mid n \in \mathbb{Z} \cup \{0\}\}$ $\Rightarrow S'^{-1}\mathbb{Z} = S^{-1}\mathbb{Z}.$

Proof. If $a \in S$, $b \mid a$ then b is a unit. It suffices to assume $a \in S$ and $b \mid a \Rightarrow b \in S$

Note:

- $U = \{ c \frac{a}{b} \mid c \text{ is a unit in } R, a, b \in S \}$ is the set of units in $S^{-1}R$.
- $T = \{ ra \mid a \in R S \text{ is an irreducible element in } R \text{ and } r \in S^{-1}R$ is a unit.}

It is clear each nonzero nonunit element can be written as a product of finite elements in T. Suppose $cu_1u_2\cdots u_t=dv_1v_2\cdots v_s$ where $u_i,v_i\in R-S$ and $c,d\in U$. Suppose

$$c = r \cdot \frac{c_1 c_2 \cdots c_p}{c'_1 c'_2 \cdots c'_q}, \ d = k \cdot \frac{d_1 d_2 \cdots d_l}{d'_1 d'_2 \cdots d'_m}$$

where $c_i, c_i', d_i, d_i' \in S$ and $r, k \in R$ are units. Then

$$r \cdot \underbrace{c_1 c_2 \cdots c_p}_{S} \cdot \underbrace{u_1 u_2 \cdots u_t}_{\notin S} \cdot \underbrace{d'_1 d'_2 \cdots d'_m}_{S} = k \cdot \underbrace{d_1 d_2 \cdots d_l}_{S} \cdot \underbrace{v_1 v_2 \cdots v_s}_{\notin S} \cdot \underbrace{c'_1 c'_2 \cdots c'_q}_{S}$$

By the UFD of R, we have t = s and there exists a bijection on $\{1, 2, 3, ..., t\}$ such that $u_i, v_{\sigma(i)}$ are associates in R.

4. SOLUTION:

Let $V = \{P \mid P \text{ is a prime ideal in } S^{-1}R\}$. Given $P' \in V$, let $P = \{b \mid b/a \in P', a \in S, b \in R\}$.

- 1) Check P is a prime ideal.
 - (i) $b_1, b_2 \in P$, $\Rightarrow \exists a_1, a_2 \in S \text{ such that } \frac{b_1}{a_1}, \frac{b_2}{a_2} \in P'$ $\Rightarrow \frac{b_1}{a_1} \cdot \frac{a_1}{a_2} = \frac{b_1}{a_2} \in P'$ $\therefore \frac{b_1}{a_2} - \frac{b_2}{a_2} = \frac{b_1 - b_2}{a_2} \in P' \Rightarrow b_1 - b_2 \in P.$
 - (ii) $\forall r \in R$ $\frac{b_1}{a_1} \cdot \frac{r}{a_1} = \frac{b_1 r}{a_1^2} \in P' \Rightarrow b_1 r \in P$.
 - (iii) if $b_1, b_2 \in P$, $\Rightarrow \exists a \in S \text{ such that } \frac{b_1 b_2}{a} \in P'$. $\Rightarrow \frac{b_1 b_2}{a} \cdot \frac{a}{a_2} \in P'$. $\Rightarrow \frac{b_1}{a} \cdot \frac{b_2 a}{a_2} \in P'$. Case (i): $\frac{b_1}{a} \in P' \Rightarrow b_1 \in P$, (done) Case (ii): $\frac{b_2 a}{a_2} \in P' \Rightarrow \begin{cases} \frac{a}{a} \in P', P' = S^{-1}R. \ (\rightarrow \leftarrow) \\ \frac{b_2}{a} \in P' \Rightarrow b_2 \in P. \ (\text{done}) \end{cases}$
- 2) $P' = S^{-1}R = PS^{-1}R$. $ab \in P \Rightarrow a \in P$ or $b \in P$. (prime)

5. SOLUTION:

a) 這一小題要利用上課證過的定理:

Theorem. Let R be a ring and $S \subseteq R$ be multiplicative closed. Set $U = \{P \mid P \text{ is a prime in } R \text{ with } P \cap S = \varnothing \}, V = \{P' \mid P' \text{ is a prime in } S^{-1}R \}$. Then there exist a bijection from U to V. 取 S = R - P, 令 $U = \{Q \mid Q \text{ is a prime in } R \text{ with } Q \cap S = \varnothing \}, V = \{Q' \mid Q' \text{ is a prime in } S^{-1}R \}$. 即可得證。

b) Let M be a maximal ideal of R_P . Since $R_P^2 = R_P$, by Theorem 2.19 M is also a prime ideal. by (a) $\exists Q \subseteq P$ such that $Q_P = M$.

 $\therefore Q \subseteq P, \therefore Q_P \subseteq P \Rightarrow M \subseteq P_P.$

Claim: $P_p \neq R_p$. Suppose $P_P = R_P$, i.e. $S^{-1}P = S^{-1}R$ where S = R - P. Define a map $\tau_s : R \to R_P$ by $\tau_s(r) = (r, 1)$ for $r \in R \Rightarrow \tau_s^{-1}(P_P) = \tau_s^{-1}(R_P) = R, 1 \in R$. Let $\tau_s(1) = \overline{(a,s)} \in P_P$ for some $a \in P, s \in S$. $\tau_s(1) = \overline{(1,1)}$, $\overline{(a,s)} = \overline{(1,1)}$. Then $\exists \rho \in S$ such that $1s\rho = 1a\rho \Rightarrow S \cap P \neq \emptyset$. This contradicts S = R - P.

c)
$$R = \mathbb{Z}, \{0\} = Q \subseteq P = \{2\}.$$

6. Solution:

It suffices to show that each nonunit is a nilpotent. Let $r+M^n$ be a nonunit, if $r \in M$, then $(r+M^n)^n = r^n + M^n = 0 + M^n$. Suppose $r \notin M$, since R/M is a field, there exists $s \in R$ such that (r+M)(s+M) = 1 + M. Then $rs-1 \in M$, hence $r(t) + (-1)^n = (rs-1)^n \in M^n$, for some $t \in R$. Then $r+M^n$ is a nonunit in R/M^n , a contradiction.

7. SOLUTION:

(⇒) Since R is local, the maximal ideal $M = \{a \mid a \text{ is nonunit in } R \, \forall a \in R\}$. $\forall a, b \in M, a+b \in M$, since M is ideal, i.e. a+b is nonunit. That is, if a and b are nonunit, then a+b is nonunit. This is equivalent to the statement "If a+b is unit, then a or b is a unit."

 (\Leftarrow) Let $M = \{a \in R \mid a \text{ is nonunit}\}.$

Claim: M is a maximal ideal in R. Let $a, b \in M$. (i) $a + b \in M$. (ii) $\forall r \in R, ra \in M$. If $ra \notin M$, then ra is unit, i.e. $\exists c$ such that $(ra) \cdot c = 1_R$.

$$\Rightarrow a \cdot (rc) = 1_R$$

 $\Rightarrow rc$ is unit of a.

This contradicts the fact $a \in M$.