進階代數第四次作業

2008．10．27 2008．11．03

1．Solution：

$S=\{a \mid a$ is not a zero divisor $\}, S^{-1} R$ is the complete ring of quotient of R ．

$$
\begin{aligned}
S & =\left\{x \in \mathbb{Z}_{n} \mid(x, n)=1\right\} \\
S^{-1} \mathbb{Z}_{n} & =\left\{m / a \mid m \in \mathbb{Z}_{n}, a \in S\right\} \\
& =\left\{m \mid m \in \mathbb{Z}_{n}\right\} \\
& =\mathbb{Z}_{n}
\end{aligned}
$$

because $(a, n)=1$ therefore at $+n s=1$ for some $s, t \in \mathbb{Z}_{n}$ ．Hence $1 / a=t$ ，because $m / a=m t \in \mathbb{Z}_{n}$ ．

2．Solution：
利用 universal theorem，造一個函數 $\widehat{\phi}: S^{*-1} S \rightarrow T^{*-1} T$ ，接著檢查 $\widehat{\phi}$ 是否爲一對一且映成。
－onto：If $(a / b) /(c / d) \in T^{*^{-1}} T$ then $\widehat{\phi}((a d) /(b c))=(a / b) /(c / d)$ ．
－ $1-1: \operatorname{ker}(\widehat{\phi})=\{0\}$ ．

3. Solution:

a) In $S^{-1} R, \frac{b}{a} \frac{d}{c}=\frac{b d}{a c}$. (by definition)

Suppose $\frac{b}{a} \frac{d}{c}=0$, then $\frac{b}{a} \frac{d}{c}=\frac{0}{1}$. Hence $(b d-0 \cdot a c) s=0$ for some $s \in S$.
Hence $b d=0, \because R$ is an integral domain. Thus $b=0$ or $d=0$. Then $\frac{b}{a}=0$ or $\frac{d}{c}=0$.
b) $\star \frac{b}{a}=\frac{b_{1} b_{2} \cdots b_{m}}{a_{1} a_{2} \cdots a_{n}}=\frac{b_{1}}{1} \frac{b_{2}}{1} \cdots \frac{b_{m}}{1} \frac{1}{a_{1}} \frac{1}{a_{2}} \cdots \frac{1}{a_{n}}$

For example, $R=\mathbb{Z}, S=\left\{6^{k} \mid k=0,1, \ldots\right\} . S^{-1} R=\left\{n 6^{k} \mid n \in\right.$ $\mathbb{Z}, k \in \mathbb{N} \cup\{0\}\}$
$\Rightarrow S^{\prime}=\left\{2^{n}, 3^{n} \mid n \in \mathbb{Z} \cup\{0\}\right\}$
$\Rightarrow S^{\prime-1} \mathbb{Z}=S^{-1} \mathbb{Z}$.
Proof. If $a \in S, b \mid a$ then b is a unit. It suffices to assume $a \in S$ and $b \mid a \Rightarrow b \in S$

Note:

- $U=\left\{\left.c \frac{a}{b} \right\rvert\, c\right.$ is a unit in $\left.R, a, b \in S\right\}$ is the set of units in $S^{-1} R$.
- $T=\left\{r a \mid a \in R-S\right.$ is an irreducible element in R and $r \in S^{-1} R$ is a unit.\}

It is clear each nonzero nonunit element can be written as a product of finite elements in T. Suppose $c u_{1} u_{2} \cdots u_{t}=d v_{1} v_{2} \cdots v_{s}$ where $u_{i}, v_{i} \in$ $R-S$ and $c, d \in U$. Suppose

$$
c=r \cdot \frac{c_{1} c_{2} \cdots c_{p}}{c_{1}^{\prime} c_{2}^{\prime} \cdots c_{q}^{\prime}}, d=k \cdot \frac{d_{1} d_{2} \cdots d_{l}}{d_{1}^{\prime} d_{2}^{\prime} \cdots d_{m}^{\prime}}
$$

where $c_{i}, c_{i}^{\prime}, d_{i}, d_{i}^{\prime} \in S$ and $r, k \in R$ are units. Then

By the UFD of R, we hava $t=s$ and there exists a bijection on $\{1,2,3, \ldots, t\}$ such that $u_{i}, v_{\sigma(i)}$ are associates in R.

4．Solution：

Let $V=\left\{P \mid P\right.$ is a prime ideal in $\left.S^{-1} R\right\}$ ．Given $P^{\prime} \in V$ ，let $P=\{b \mid b / a \in$ $\left.P^{\prime}, a \in S, b \in R\right\}$ ．

1）Check P is a prime ideal．
（i）$b_{1}, b_{2} \in P$ ，
$\Rightarrow \exists a_{1}, a_{2} \in S$ such that $\frac{b_{1}}{a_{1}}, \frac{b_{2}}{a_{2}} \in P^{\prime}$
$\Rightarrow \frac{b_{1}}{a_{1}} \cdot \frac{a_{1}}{a_{2}}=\frac{b_{1}}{a_{2}} \in P^{\prime}$
$\therefore \frac{b_{1}}{a_{2}}-\frac{b_{2}}{a_{2}}=\frac{b_{1}-b_{2}}{a_{2}} \in P^{\prime} \Rightarrow b_{1}-b_{2} \in P$.
（ii）$\forall r \in R \quad \frac{b_{1}}{a_{1}} \cdot \frac{r}{a_{1}}=\frac{b_{1} r}{a_{1}^{2}} \in P^{\prime} \Rightarrow b_{1} r \in P$ ．
（iii）if $b_{1}, b_{2} \in P$ ，
$\Rightarrow \exists a \in S$ such that $\frac{b_{1} b_{2}}{a} \in P^{\prime}$.
$\Rightarrow \frac{b_{1} b_{2}}{a} \cdot \frac{a}{a_{2}} \in P^{\prime}$ ．
$\Rightarrow \frac{b_{1}}{a} \cdot \frac{b_{2} a}{a_{2}} \in P^{\prime}$ ．
Case（i）：$\frac{b_{1}}{a} \in P^{\prime} \Rightarrow b_{1} \in P$ ，（done）
Case（ii）：$\frac{b_{2} a}{a_{2}} \in P^{\prime} \Rightarrow\left\{\begin{array}{l}\frac{a}{a} \in P^{\prime}, P^{\prime}=S^{-1} R .(\rightarrow \leftarrow) \\ \frac{b_{2}}{a} \in P^{\prime} \Rightarrow b_{2} \in P . \text {（done）}\end{array}\right.$
2）$P^{\prime}=S^{-1} R=P S^{-1} R . a b \in P \Rightarrow a \in P$ or $b \in P$ ．（prime）
5．Solution：
a）這一小題要利用上課證過的定理：
Theorem．Let R be a ring and $S \subseteq R$ be multiplicative closed．Set $U=\{P \mid P$ is a prime in R with $P \cap S=\varnothing\}, V=\left\{P^{\prime} \mid P^{\prime}\right.$ is a prime in $\left.S^{-1} R\right\}$ ．Then there exist a bijection from U to V ．
取 $S=R-P$ ，令 $U=\{Q \mid Q$ is a prime in R with $Q \cap S=\varnothing\}$ ， $V=\left\{Q^{\prime} \mid Q^{\prime}\right.$ is a prime in $\left.S^{-1} R\right\}$ 。即可得證。
b）Let M be a maximal ideal of R_{P} ．Since $R_{P}^{2}=R_{P}$ ，by Theorem 2.19 M is also a prime ideal．by（a）$\exists Q \subseteq P$ such that $Q_{P}=M$ ．
$\because Q \subseteq P, \therefore Q_{P} \subseteq P \Rightarrow M \subseteq P_{P}$.
Claim: $P_{p} \neq R_{p}$. Suppose $P_{P}=R_{P}$, i.e. $S^{-1} P=S^{-1} R$ where $S=$ $R-P$. Define a map $\tau_{s}: R \rightarrow R_{P}$ by $\tau_{s}(r)=(r, 1)$ for $r \in R \Rightarrow$ $\tau_{s}^{-1}\left(P_{P}\right)=\tau_{s}^{-1}\left(R_{P}\right)=R, 1 \in R$. Let $\tau_{s}(1)=\overline{(a, s)} \in P_{P}$ for some $a \in P, s \in S . \tau_{s}(1)=\overline{(1,1)}, \therefore \overline{(a, s)}=\overline{(1,1)}$. Then $\exists \rho \in S$ such that $1 s \rho=1 a \rho \Rightarrow S \cap P \neq \varnothing$. This contradicts $S=R-P$.
c) $R=\mathbb{Z},\{0\}=Q \subseteq P=\{2\}$.

6. Solution:

It suffices to show that each nonunit is a nilpotent. Let $r+M^{n}$ be a nonunit, if $r \in M$, then $\left(r+M^{n}\right)^{n}=r^{n}+M^{n}=0+M^{n}$. Suppose $r \notin M$, since R / M is a field, there exists $s \in R$ such that $(r+M)(s+M)=1+M$. Then $r s-1 \in M$, hence $r(t)+(-1)^{n}=(r s-1)^{n} \in M^{n}$, for some $t \in R$. Then $r+M^{n}$ is a nonunit in R / M^{n}, a contradiction.

7. Solution:

(\Rightarrow) Since R is local, the maximal ideal $M=\{a \mid a$ is nonunit in $R \forall a \in R\}$. $\forall a, b \in M, a+b \in M$, since M is ideal, i.e. $a+b$ is nonunit. That is, if a and b are nonunit, then $a+b$ is nonunit. This is equivalent to the statement "If $a+b$ is unit, then a or b is a unit."
(\Leftarrow) Let $M=\{a \in R \mid a$ is nonunit $\}$.
Claim: M is a maximal ideal in R. Let $a, b \in M$. (i) $a+b \in M$. (ii) $\forall r \in$ $R, r a \in M$. If $r a \notin M$, then $r a$ is unit, i.e. $\exists c$ such that $(r a) \cdot c=1_{R}$.
$\Rightarrow a \cdot(r c)=1_{R}$
$\Rightarrow r c$ is unit of a.
This contradicts the fact $a \in M$.

