進階代數(上) 第十次作業

上課老師: 翁志文

2008年十二月四日

- 1. (連敏筠) Let $a + b\sqrt{-1}$ be a nonzero element in the $\mathbb{Z}[\sqrt{-1}]$ -module (not \mathbb{Z} -module) $\mathbb{Z}[\sqrt{-1}]$. Show that $|\mathbb{Z}[\sqrt{-1}]/(a + b\sqrt{-1})| = a^2 + b^2$. (Hint Prove $|\mathbb{Z} \times \mathbb{Z}/((a, b), (-b, a))| = a^2 + b^2$ first.)
- 2. Let A be an $n \times n$ matrix over \mathbb{R} . $\phi(\lambda) = \det(\lambda I A)$ is called the *characteristic polynomial* of A. The *minimal polynomial* $m(\lambda) \in \mathbb{R}[\lambda]$ of A is the minic polynomial of least degree such that m(A) = 0. Suppose $\lambda I A^t$ has Smith normal form $\operatorname{diag}(d_1(\lambda), d_2(\lambda), \ldots, d_n(\lambda))$.
 - (a) (施智懷) Determine the characteristic polynomial $\phi(\lambda)$ of A.
 - (b) (邱鈺傑) Determine the minimal polynomial $m(\lambda)$ of A.
 - (c) (裴若宇) Show that $\phi(A) = 0$.
- 3. (蕭雯華) Show that if a square matrix A satisfying $A^2 = A$ then A is similar to

$$\operatorname{diag}\{1,\ldots,1,0,\ldots,0\}.$$

4. (林逸軒) Determine the 4×4 matrices B over \mathbb{R} commuting with

$$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 3 \end{array}\right).$$

5. (陳巧玲) Determine the 5×5 matrices B over \mathbb{R} commuting with

- 6. Let A be an $n \times n$ matrix over \mathbb{R} . Consider the following two statements:
- (i) The matrices commuting with A have the form f(A) for $f(\lambda) \in \mathbb{R}[\lambda]$;
- (ii) The minimum polynomial of A is the characteristic polynomial of A.
 - (a) (李光祥) Show (i) \Rightarrow (ii).
 - (b) (林詒琪) Show (ii)⇒ (i).