進階代數（上）第十次作業

上課老師：翁志文
2008 年十二月四日

1．（連敏笉）Let $a+b \sqrt{-1}$ be a nonzero element in the $\mathbb{Z}[\sqrt{-1}]$－module（not \mathbb{Z}－module） $\mathbb{Z}[\sqrt{-1}]$ ． Show that $|\mathbb{Z}[\sqrt{-1}] /(a+b \sqrt{-1})|=a^{2}+b^{2}$ ．（Hint Prove $|\mathbb{Z} \times \mathbb{Z} /((a, b),(-b, a))|=a^{2}+b^{2}$ first． ）

2．Let A be an $n \times n$ matrix over $\mathbb{R} . \phi(\lambda)=\operatorname{det}(\lambda I-A)$ is called the characteristic polynomial of A ．The minimal polynomial $m(\lambda) \in \mathbb{R}[\lambda]$ of A is the minic polynomial of least degree such that $m(A)=0$ ．Suppose $\lambda I-A^{t}$ has Smith normal form $\operatorname{diag}\left(d_{1}(\lambda), d_{2}(\lambda), \ldots, d_{n}(\lambda)\right)$ ．
（a）（施智懷）Determine the characteristic polynomial $\phi(\lambda)$ of A ．
（b）（邱鈺傑）Determine the minimal polynomial $m(\lambda)$ of A ．
（c）（裴若宇）Show that $\phi(A)=0$ ．
3．（蕭雯華）Show that if a square matrix A satisfying $A^{2}=A$ then A is similar to

$$
\operatorname{diag}\{1, \ldots, 1,0, \ldots, 0\}
$$

4．（林逸軒）Determine the 4×4 matrices B over \mathbb{R} commuting with

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & 3
\end{array}\right)
$$

5．（陳巧玲）Determine the 5×5 matrices B over \mathbb{R} commuting with

$$
\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) .
$$

6．Let A be an $n \times n$ matrix over \mathbb{R} ．Consider the following two statements：
（i）The matrices commuting with A have the form $f(A)$ for $f(\lambda) \in \mathbb{R}[\lambda]$ ；
（ii）The minimum polynomial of A is the characteristic polynomial of A ．
（a）（李光祥）Show（i）\Rightarrow（ii）．
（b）（林詒琪）Show（ii）\Rightarrow（i）．

