Solution for Homework 10

Recording and typing by 9622534, Bin Yeh

1. We define $f: \mathbb{Z} \times \mathbb{Z} /((a, b),(-b, a)) \mapsto \mathbb{Z}[\sqrt{-1}] /(a+b i)$ by $f([x, y])=[x+y i]$. We claim that f is bijection. Then we check
Onto: Clear.
One to one: Suppose $\exists[(x, y)],\left[\left(x^{\prime}, y^{\prime}\right)\right] \in \mathbb{Z} \times \mathbb{Z} /((a, b),(-b, a))$ such that $f([(x, y)])=x+y i=f\left(\left[\left(x^{\prime}, y^{\prime}\right)\right]\right)=x^{\prime}+y^{\prime} i$. Then we have $\left(x-x^{\prime}\right)+\left(y-y^{\prime}\right)=0$.
Thus there exists some $\mathrm{s}, \mathrm{t}, \mathrm{a}, \mathrm{b}$ such that $(s+t i)(a+b i)=0$ and $x-x^{\prime}=s a-t b, y-y^{\prime}=s b+t a$.
$\Rightarrow\left(x-x^{\prime}, y-y^{\prime}\right)=s(a, b)+t(-b, a) \in((a, b),(-b, a))$
$\Rightarrow\left[x-x^{\prime}, y-y^{\prime}\right]=0$. Therefore $x=x^{\prime}, y=y^{\prime}$.
Well-define is similar to prove.
Now since $(a, b) \dot{(}-b, a)=0,(a, b) \perp(-b, a)$
Thus $\|(a, b)\| \times\|(-b, a)\|=a^{2}+b^{2}$.
Comment from teacher:
$\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$ has smith normal form $\left(\begin{array}{cc}1 & 0 \\ 0 & a^{2}+b^{2}\end{array}\right)$. Hence
$\mathbb{Z} \times \mathbb{Z} /((a, b),(-b, a)) \cong \mathbb{Z}_{a^{2}+b^{2}}$ and $\left|\mathbb{Z}_{a^{2}+b^{2}}\right|=a^{2}+b^{2}$.
2.(a) $\phi(\lambda)=\operatorname{det}(\lambda I-A)=\operatorname{det}\left((\lambda I-A)^{t}\right)=\operatorname{det}\left(\lambda I-A^{t}\right)=\operatorname{det}(P D Q)$ for some matrix $\mathrm{P}, \mathrm{D}, \mathrm{Q}$ where D is a diagonal matrix, P, Q are unit. Thus $\operatorname{det}(D)=d_{1}(\lambda) \ldots d_{n}(\lambda)$.
(b) Since $A \sim B(A$ is similar to $B)$ we have $\min (A)=\min (B)$.
$A \sim\left(\begin{array}{ccc}B_{1} & & 0 \\ & \ddots & \\ 0 & & B_{n}\end{array}\right) \Rightarrow A^{2}=\left(\begin{array}{ccc}B_{1}^{2} & & 0 \\ & \ddots & \\ 0 & & B_{n}^{2}\end{array}\right)$
(Since $A=S^{-1} B S \Rightarrow A^{2}=S^{-1} B S S^{-1} B S=S^{-1} B^{2} S$, so is $A^{3}, A^{4} \ldots$)
Thus $f(A) \sim\left(\begin{array}{ccc}f\left(B_{1}\right) & & 0 \\ & \ddots & \\ 0 & & f\left(B_{n}\right)\end{array}\right)$.
We claim that $(i) d_{n}(A)=0$ and $(i i) \operatorname{deg}(f)<\operatorname{deg}\left(d_{n}\right) \Rightarrow f(A) \neq 0$. To prove
(i), let $d_{n}=\left(x-\alpha_{1}\right)^{n_{1}}\left(x-\alpha_{2}\right)^{n_{2}} \cdots\left(x-\alpha_{t}\right)^{n_{t}}\left(x^{2}+a_{1} x+b_{1}\right)^{m_{1}}\left(x^{2}+a_{2} x+\right.$ $\left.b_{2}\right)^{m_{2}} \cdots\left(x^{2}+a_{s} x+b_{s}\right)^{m_{s}}$, then $d_{n}=$ $\left(x-\alpha_{1}\right)^{n_{1}}\left(x-\alpha_{2}\right)^{n_{2}} \cdots\left(x-\alpha_{t}\right)^{n_{t}}\left(x-\lambda_{1}\right)^{m_{1}}\left(x-\overline{\lambda_{1}}\right)^{m_{1}} \cdots\left(x-\lambda_{s}\right)^{m_{s}}\left(x-\overline{\lambda_{s}}\right)^{m_{s}}$, transform B_{n} into Jordan Canonical form we have

where the number of $\alpha_{i}, \lambda_{i}, \overline{\lambda_{i}}$ is n_{i}, m_{i}, m_{i} respectively.
Thus the minimal polynomial is
$\left(x-\alpha_{1}\right)^{n_{1}}\left(x-\alpha_{2}\right)^{n_{2}} \cdots\left(x-\alpha_{t}\right)^{n_{t}}\left(x-\lambda_{1}\right)^{m_{1}}\left(x-\overline{\lambda_{1}}\right)^{m_{1}} \cdots\left(x-\lambda_{s}\right)^{m_{s}}\left(x-\overline{\lambda_{s}}\right)^{m_{s}}$,
$\Rightarrow d_{n}\left(B_{n}\right)=0$ (Note $d_{1}\left|d_{2}\right| \cdots \mid d_{n}$)
$\Rightarrow d_{i}\left(B_{i}\right)=0$
$\Rightarrow d_{n}\left(B_{i}\right)=0 \forall i$
$\Rightarrow d_{n}(A)=0$
To prove (ii), note that
$B_{n}=\left(\begin{array}{cccc}* & & & * \\ 1 & \ddots & & \\ & \ddots & & \\ & & & \\ 0 & & 1 & *\end{array}\right), B_{n}^{2}=\left(\begin{array}{ccccc}* & & & * \\ * & \ddots & & \\ 1 & \ddots & & \\ & \ddots & & \\ & & 1 & * & *\end{array}\right)$,
$B_{n}^{3}=\left(\begin{array}{cccccc}* & & & & & * \\ * & \ddots & & & \\ * & \ddots & & & \\ 1 & \ddots & & & & \\ & \ddots & & & & \\ 0 & & 1 & * & * & *\end{array}\right)$ w
where * means it could be any value. Observe
the behavior of the all 1 oblique line of the bottom-left triangle of the matrices. If $f\left(B_{n}\right)=c_{k-1} B_{n}^{k-1}+c_{k-2} B_{n}^{k-2}+\cdots+c_{1} B_{n}^{1}+c_{0} I=0$, then consider the bottom-left triangle of $f\left(B_{n}\right)$ we would find that f must be the constant polynomial $f(x)=0$, which has no degree, a contradiction.
(c) By part (a), $\phi(\lambda)=d_{1}(\lambda) \cdots d_{n}(\lambda)$, so $\phi(A)=d_{1}(A) \cdots d_{n}(A)$. By part (b) $d_{n}(A)=0$, thus $\phi(A)=0$.
2. By finding the rational canonical form of $A, A=S B S^{-1}$,
$B=\left(\begin{array}{cccc}B_{1} & & 0 \\ & \ddots & \\ 0 & & B_{t}\end{array}\right)$, where $B_{i}=\left(\begin{array}{ccccc}0 & & & & c_{i_{1}} \\ 1 & \ddots & & & \vdots \\ & \ddots & & & \\ 0 & & 1 & 0 & c_{i_{n_{i}}}\end{array}\right)_{n_{i} \times n_{i}}$.
Since $A^{2}=A$, then $B^{2}=B$ and therefore $B_{i}^{2}=B_{i}$. Suppose
(i) $n_{i}=1$

Then $B_{i}=\left(c_{i_{1}}\right)$. Since $B^{2}=B, c_{i_{1}}$ must 0 or 1.(Because it's over an PID)
(ii) $n_{i} \geq 2$

If B_{i} are all zero then it's trivial. If not, we have
$\left(B_{i}\right)_{j_{n_{i}-1}}=0 \forall j=1,2, \ldots, n_{i}-1$ and $\left(B_{i}^{2}\right)_{j_{n_{i}-1}}=c_{i_{j}}=0 \forall j=1,2, \ldots, n_{i}-1$.
Suppose
(1) $n_{i}=2$

Then $B_{i}=\left(\begin{array}{cc}0 & c_{i_{1}} \\ 1 & c_{i_{2}}\end{array}\right)$ and $B_{i}^{2}=\left(\begin{array}{cc}c_{i_{1}} & c_{i_{1}} c_{i_{2}} \\ c_{i_{2}} & c_{i_{1}}+c_{i_{2}}^{2}\end{array}\right)$
$\Rightarrow c_{i_{1}}=0, c_{i_{2}}=1$ thus $B_{i}=\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)$.
Note that $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and
$\left(\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right)$ are inverse to each other.
Thus $\left(\begin{array}{cc}0 & 0 \\ 1 & 1\end{array}\right) \sim\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. By reordering the columns, we have $A=\operatorname{diag}\{1, \ldots 1,0, \ldots, 0\}$.
(2) $n_{i} \geq 3$

This is impossible.
Comment from teacher: $A^{2}=A$ implies that A has minimal polynomial $x^{2}-x$ or x or $x-1$. But $x I-A^{t} \sim \operatorname{diag}\left\{d_{1}, \ldots, d_{n}\right\}$ and d_{n} is the minimal polynomial, thus $x I-A^{t}=$

$$
\begin{aligned}
& \left(\begin{array}{lll}
x & & \\
& \ddots & \\
& & x
\end{array}\right) \text { or }\left(\begin{array}{lll}
x-1 & & \\
& \ddots & \\
& & x-1
\end{array}\right) \text { or } \\
& \left(\begin{array}{llllll}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & & x^{2}-x & & \\
& & & & \ddots & \\
& & & & & x^{2}-x
\end{array}\right)
\end{aligned}
$$

4. Let $A=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 3\end{array}\right)$

Since A is in rational canonical form, the 1 at top-left implies $d_{1}(\lambda)=\lambda-1$ and the 4 th column implies $d_{2}(\lambda)=(\lambda-1)^{3}$.
Thus $\eta\left(z_{1}\right)=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right), \eta\left(z_{2}\right)=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right), \lambda \eta\left(z_{2}\right)=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right), \lambda^{2} \eta\left(z_{2}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$.
$\Rightarrow s=2$ and $c_{j i}$ fits $d_{j} \mid d_{i} c_{j i}$ and $\operatorname{deg}\left(c_{j i}\right)<\operatorname{deg}\left(d_{j}\right)$
$\Rightarrow C=\left(\begin{array}{cc}a & b \\ (\lambda-1)^{2} c & d+e \lambda+f \lambda^{2}\end{array}\right)$ for some $a, b, c, d, e, f \in \mathbb{R}$
$\Rightarrow B z_{i}=\sum_{i=1}^{s} c_{j i} z_{j}$. By some routine calculating we have
$B=\left(\begin{array}{cccc}a & b & b & b \\ c & d & f & e+3 f \\ -2 c & e & d-3 f & -3 e-8 f \\ c & f & e+3 f & d+3 e+6 f\end{array}\right)$
5. Let $A=\left(\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right)=\left(e_{2}, 0, e_{4}, e_{5}, 0\right)=\left(\begin{array}{c}0 \\ e_{1}^{t} \\ 0 \\ e_{3}^{t} \\ e_{4}^{t}\end{array}\right)$.

Let $B=\left(B^{(1)}, B^{(2)}, B^{(3)}, B^{(4)}, B^{(5)}\right)=\left(\begin{array}{c}B_{(1)} \\ B_{(2)} \\ B_{(3)} \\ B_{(4)} \\ B_{(5)}\end{array}\right)$, where $B^{(i)}$ denotes the $i t h$
columns of $\mathrm{B}, B_{(j)}$ denotes the j th row of B .
Since $A B=B A$,
$B A=\left(\begin{array}{l}B_{(1)} \\ B_{(2)} \\ B_{(3)} \\ B_{(4)} \\ B_{(5)}\end{array}\right)\left(e_{2}, 0, e_{4}, e_{5}, 0\right)=\left(\begin{array}{ccccc}B_{12} & 0 & B_{14} & B_{15} & 0 \\ B_{22} & 0 & B_{24} & B_{25} & 0 \\ B_{32} & 0 & B_{34} & B_{35} & 0 \\ B_{42} & 0 & B_{44} & B_{45} & 0 \\ B_{52} & 0 & B_{54} & B_{55} & 0\end{array}\right)$
$A B=\left(\begin{array}{c}0 \\ e_{1}^{t} \\ 0 \\ e_{3}^{t} \\ e_{4}^{t}\end{array}\right)\left(B^{(1)}, B^{(2)}, B^{(3)}, B^{(4)}, B^{(5)}\right)=$

$$
\left.\left.\begin{array}{l}
\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
B_{11} & B_{12} & B_{13} & B_{14} & B_{15} \\
0 & 0 & 0 & 0 & 0 \\
B_{31} & B_{32} & B_{33} & B_{34} & B_{35} \\
B_{41} & B_{42} & B_{43} & B_{44} & B_{45}
\end{array}\right) \\
\Rightarrow\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
B_{11} & B_{12} & B_{13} & B_{14} & B_{15} \\
0 & 0 & 0 & 0 & 0 \\
B_{31} & B_{32} & B_{33} & B_{34} & B_{35} \\
B_{41} & B_{42} & B_{43} & B_{44} & B_{45}
\end{array}\right)=\left(\begin{array}{ccccc}
B_{12} & 0 & B_{14} & B_{15} & 0 \\
B_{22} & 0 & B_{24} & B_{25} & 0 \\
B_{32} & 0 & B_{34} & B_{35} & 0 \\
B_{42} & 0 & B_{44} & B_{45} & 0 \\
B_{52} & 0 & B_{54} & B_{55} & 0
\end{array}\right) \\
\Rightarrow B=\left(\begin{array}{cccc}
B_{11} & 0 & B_{13} & 0 \\
B_{21} & B_{11} & B_{23} & B_{13} \\
0 & 0 & B_{33} & 0 \\
B_{41} & 0 & 0 & B_{33} \\
B_{51} & B_{41} & B_{53} & B_{54}
\end{array}\right) B_{33}
\end{array}\right) \text { with dimension 9. } \square\right]
$$

6. (a) Let $X=\left\{B \in \mathbb{M}_{n \times n}(\mathbb{R}) \mid A B=B A\right\}, Y=\left\{B \in \mathbb{M}_{n \times n}(\mathbb{R}) \mid B=f(A)\right.$ for some $f(\lambda) \in \mathbb{R}[\lambda]\}$
Claim: $\operatorname{dim}(X) \geq n$ and $\operatorname{dim}(Y) \leq n$
(1) Consider $\lambda I-A^{t} \sim\left(\begin{array}{cccccc}1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & d_{1} & & \\ & & & & \ddots & \\ & & & & & d_{s}\end{array}\right)$, where
$\sum_{i=1}^{s} \operatorname{deg}\left(d_{i}\right)=n$, then C , the matrix which is commuting to A is like
$C=\left(\begin{array}{ccc}\alpha_{1} & & 0 \\ & \ddots & \\ 0 & & \alpha_{s}\end{array}\right)_{s \times s}$ where α_{i} are blocks. The i th block contains $\operatorname{deg}\left(d_{i}\right)$
variables, thus dimension of X is at least n.
(2) By the definition of minimal polynomial $m(\lambda)$ of A, $\operatorname{dim}(Y)=\operatorname{deg}(m(\lambda)) \leq n$.
Then by the hypothesis we have $\operatorname{dim}(X)=\operatorname{dim}(Y)$, i.e. $\operatorname{deg}(m(\lambda))=n$, this implies that $m(\lambda)=\phi(\lambda)$.
(b) We define X and Y as in part (a). Then clearly $Y \subseteq X$ and by hypothesis we have $\operatorname{dim}(Y)=n$.
Let $c=\left(c_{i}\right),\left\{z_{1}, A z_{1}, \ldots, A^{n-1} z_{1}\right\}$ be a basis of Y. Let
$B z_{1}=c_{0} B_{0}+c_{1} A z_{1}+\ldots+c_{n-1} A^{n-1} z_{1} .(B \in X)$
Then $B\left(A z_{1}\right)=A\left(B z_{1}\right)=c_{0} A z_{1}+c_{1} A^{2} z_{1}+\cdots+c_{n-1} A^{n} z_{1}$. Since $\phi(A)=0$,
$\Rightarrow A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A+a_{0} I=0$
$\Rightarrow A^{n}=-\left(a_{n-1}+\cdots+a_{0} I\right)$
$\Rightarrow B=\left(\begin{array}{c}c_{0} \\ c_{1} \\ \vdots \\ c_{n-1}\end{array}\right)$
Thus $\operatorname{dim}(X)=n$.
