\documentclass[12pt]{exam} \marginparwidth 0pt \oddsidemargin -20pt \evensidemargin 0pt \marginparsep 0pt \topmargin -50 pt \textwidth 7in \textheight 10.7 in %\hoffset 0.1in \voffset -0.8in \addpoints \usepackage{CJK} \usepackage{amsmath, amssymb} \usepackage{multicol} \begin{CJK*}{Bg5}{cjk} \CJKtilde \title{進階代數(上)第十一次作業} \date{2008~年十二月十一日} \end{CJK*} \author{上課老師: 翁志文 } \boxedpoints \pointname{分} \begin{document} \begin{CJK*}{Bg5}{cjk} \CJKtilde \maketitle %\begin{center} % \fbox{\fbox{\parbox{5.2in}{\centering % 這份試卷有 \ \numquestions\ 大題,\ 共計\ \numpoints\ % 分.\ 請詳細提供所有過程!}}} %\end{center}\vspace{0.1in} \bigskip \begin{questions} \question (葉彬) Determine all the $n\times n$ matrices in rational canonical form over $\mathbb{R}$ with minimal polynomial $\lambda^2+1.$ \question (The Five Lemma) Suppose we have the following commutative diagram of $R$-module homomorphisms with exact rows. $$\left. \begin{array}{ccccccccc} ~~~~~M_1 & \longrightarrow & ~~~~~M_2 & \longrightarrow & ~~~~~M_3 & \longrightarrow & ~~~~~M_4 & \longrightarrow & ~~~~~M_5\\ & & & & & & && \\ f_1\displaystyle\downarrow & \displaystyle\circlearrowright & f_2\displaystyle\downarrow & \displaystyle \circlearrowright & f_3\displaystyle\downarrow & \displaystyle\circlearrowright& f_4\displaystyle\downarrow & \displaystyle\circlearrowright& f_5\displaystyle\downarrow \\ & & & & & & && \\ ~~~~~N_1 & \longrightarrow & ~~~~~N_2 & \longrightarrow & ~~~~~N_3& \longrightarrow & ~~~~~N_4 & \longrightarrow & ~~~~~N_5 \\ \end{array} \right.$$ \begin{parts} \part (林家銘) Prove directly $f_1$ surjection and $f_2$, $f_4$ injection $\Longrightarrow$ $f_3$ injection. \part (林育生) Prove (a) by using The Short Five Lemma. \part (陳健文) Prove directly $f_5$ injection and $f_2$, $f_4$ surjection $\Longrightarrow$ $f_3$ surjection. \part (羅健鋒) Prove (c) by using The Short Five Lemma. \end{parts} \question Let $P_i$, $i\in I,$ be $R$-modules. \begin{parts} \part (何昕暘) Show that if $\oplus_{i\in I}P_i$ is projective then $P_i$ is projective for each $i\in I.$ \part (賴德展) Show that if $P_i$ is projective for each $i\in I$ then $\oplus_{i\in I}P_i$ is projective. \end{parts} \end{questions} \end{CJK*} \end{document}