Advanced Algebra H.W(I)

1. Let Q denote the ring of real quarternions. For $x=a+b i+c j+d k \in Q$ the conjugate of x is $x^{*}:=a-b i-c j-d k$.
(a) Show $(a+b i+c j+d k)(a-b i-c j-d k)=a^{2}+b^{2}+c^{2}+d^{2}$ for $a, b, c, d \in \mathbb{R}$.
(b) Suppose $a_{1}, b_{1}, c_{1}, d_{1}, a_{2}, b_{2}, c_{2}, d_{2} \in \mathbb{Z}$. Show that there exist $a, b, c, d \in$ \mathbb{Z} such that

$$
\left(a_{1}^{2}+b_{1}^{2}+c_{1}^{2}+d_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}+c_{2}^{2}+d_{2}^{2}\right)=a^{2}+b^{2}+c^{2}+d^{2} .
$$

(c) Suppose $u \in \mathbb{Z}$ and $2 u=a^{2}+b^{2}+c^{2}+d^{2}$ for some $a, b, c, d \in \mathbb{Z}$. Then $u=e^{2}+f^{2}+g^{2}+h^{2}$ for some $e, f, g, h \in \mathbb{Z}$. (Hint. Try $e=(a+b) / 2$ and $f=(a-b) / 2$.)
Solution:
(a) Since $i j=-j i, j k=-k j, k i=-i k$ and $i^{2}=j^{2}=k^{2}=-1$, $(a+b i+c j+d k)(a-b i-c j-d k)=a^{2}+b^{2}+c^{2}+d^{2}$.
(b) $i^{*}=-i, j^{*}=-j, k^{*}=-k \cdot x=a_{1}+b_{1} i+c_{1} j+d_{1} k$, then $x^{*}=$ $a_{1}-b_{1} i-c_{1} j-d_{1} k$.
Let $x=a_{1}+b_{1} i+c_{1} j+d_{1} k, y=a_{2}+b_{2} i+c_{2} j+d_{2} k$,
Then $\left(a_{1}^{2}+b_{1}^{2}+c_{1}^{2}+d_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}+c_{2}^{2}+d_{2}^{2}\right)=x x^{*}\left(a_{2}^{2}+b_{2}^{2}+c_{2}^{2}+d_{2}^{2}\right)=$ $x\left(a_{2}^{2}+b_{2}^{2}+c_{2}^{2}+d_{2}^{2}\right) x^{*}=x\left(y y^{*}\right) x^{*}=(x y)\left(y^{*} x^{*}\right)=(x y)(x y)^{*}$.
$\exists a, b, c, d$ s.t $x y^{*}=a+b i+c j+d k$.
Then $\left(a_{1}^{2}+b_{1}^{2}+c_{1}^{2}+d_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}+c_{2}^{2}+d_{2}^{2}\right)=a^{2}+b^{2}+c^{2}+d^{2}$.
(c) Let $e=\frac{a+b}{2}, f=\frac{a u b}{2}$. Then $e^{2}+f^{2}=\frac{1}{2}\left(a^{2}+b^{2}\right)$. Similarly to g, h.

We want to show e, f, g, h are integers.
We only claim that a, b, c, d have even odd numbers. It's easy to see.
2. Let R be a commutative ring of prime characteristic p.
(a) Show that

$$
(a+b)^{p^{n}}=a^{p^{n}}+b^{p^{n}}
$$

for all $a, b \in \mathbb{N}$.
(b) Show that the map $f: R \rightarrow R$ given by $f(a)=a^{p}$ is a homomorphism of rings.
Solution:
(a) By induction on n.
$n=1,(a+b)^{p}=\sum_{i=0}^{i=p}\binom{p}{i} a^{i} b^{p-i}=a^{p}+b^{p}$.
$n=k$ is true. Consider $n=k+1$.
$(a+b)^{p^{k+1}}=\left((a+b)^{p^{k}}\right)^{p}=\left(\left(a^{p^{k}}+b^{p^{k}}\right)\right)^{p}=a^{p^{(k+1)}}+b^{p^{(k+1)}}$.
(b) $f(a+b)=(a+b)^{p}=a^{p}+b^{p}=f(a)+f(b)$, and $f(a b)=(a b)^{p}=$ $\left(a^{p}\right)\left(b^{p}\right)=f(a) f(b)$. Hence f is a homomorphism.
3. An element a of a ring is nilpotent if $a^{n}=0$ for some n. Prove that in a commutative ring $a+b$ is nilpotent if a and b are. Show that this result may be false if R is not commutative.

Solution:
(a) Since a, b are nilpotent, $\exists s, t$: integers s.t $a^{s}=0$ and $b^{s}=0$.
$(a+b)^{s+t}=\sum_{i=0}^{s+t}\binom{s+t}{i} a^{i} b^{s+t-i}=0 . \because$ if $i \geq s$, then $a^{i}=0$. if $i<s$, then $s+t-i>t$ this implies $b^{s+t-i}=0$.
(b)

$$
\begin{aligned}
& a=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \\
& b=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

$a^{2}=b^{2}=0, a, b$ are nilpotent.

$$
\begin{gathered}
a+b=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
(a+b)^{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]: \text { not nilpotent. }
\end{gathered}
$$

4. In a ring R show that the following conditions are equivalent.
(a) R has no nonzero nilpotent elements.
(b) If $a \in R$ and $a^{2}=0$, then $a=0$.

Solution:
(a) \Rightarrow (b) Trivial.
(b) $\Rightarrow(a)$ Suppose $\exists b \neq 0$ is nilpotent. Then $\exists k$: smallest positive integer s.t $b^{k}=0$
Case 1: if k is even. Let $k=2 d, d \geq 1 . b^{k}=b^{2 d}=\left(\left(b^{d}\right)\right)^{2}=0$. By (b), $b^{d}=0$, a contradiction.
Case 2: if k is odd. Let $k=2 d+1, d \geq 1 . b^{k}=0 . \quad b^{k} \cdot b=b^{2 d+2}=$ $\left(\left(b^{d+1}\right)\right)^{2}=0$. By (b), $b^{d+1}=0$, a contradiction.
5. Give an example of a nonzero homomorphism $f: R \rightarrow R^{\prime}$ of rings such that $f(1) \neq 1^{\prime}$. Is it possible 1^{\prime} in the image of f ?
Solution:
(a) $f: \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ by $f(n)=(n, 0)$. $\forall n \in \mathbb{Z}$
(b) N0. Suppose $\exists a \in R$ s.t $f(a)=1^{\prime}$. Then $1^{\prime}=f(a)=f(1 \cdot a)=$ $f(1) \cdot f(a)=f(1) \cdot 1^{\prime}=f(1)$, a contradiction.
6. Find a nonidentity homorphism ϕ of \mathbb{R} into \mathbb{R}.

Solution:
Define $\phi: \mathbb{R} \rightarrow \mathbb{R}$ by $\phi(a)=0, \forall a \in \mathbb{R}$.
7. Show that the only ring homomorphism ϕ of \mathbb{R} into \mathbb{R} with $\phi(1)=1$ is the identity.

Solution:
$\phi: \mathbb{R} \rightarrow \mathbb{R}$ s.t $\phi(1)=1$.
$\forall k \in \mathbb{N}, \phi(k)=\phi(1+1+\cdots+1)=\phi(1)+\phi(1)+\cdots \phi(1)=1+1+\cdots+1=$ k.
$0=\phi(0)=\phi(k-k)=\phi(k)+\phi(-k) \Rightarrow \phi(-k)=-k$.
$\forall a \in \mathbb{Z}, 1=\phi\left(a \cdot \frac{1}{a}\right)=\phi(a) \cdot \phi\left(\frac{1}{a}\right)=a \cdot \phi\left(\frac{1}{a}\right) \Rightarrow \phi\left(\frac{1}{a}\right)=\frac{1}{a}$.
$\forall a, b \in \mathbb{Z}, \phi\left(\frac{b}{a}\right)=\phi(b) \cdot \phi\left(\frac{1}{a}\right)=b \cdot \frac{1}{a}=\frac{b}{a}$.
$\forall x \in \mathbb{R}, \phi\left(x^{2}\right)=\phi(x) \cdot \phi(x)=(\phi(x))^{2}$.
$\forall x \in \mathbb{R}^{+}, \phi(x)=\phi(\sqrt{x})^{2}>0$.
$\forall a, b \in \mathbb{R}$ and $a-b>0, \phi(a-b)=\phi(a)-\phi(b)>0$, This implies $\phi(a)>$ phi(b).
$\forall x \in \mathbb{R}$. Suppose $\phi(a)=c$, where $a \neq c$. W.L.O.G, suppose $a>c$. Then $\exists r \in \mathbb{Q}$ s.t $a>r>c . c=\phi(a)>\phi(r)=r>c$, a contradiction. Hence $\phi(a)=a, \forall a \in \mathbb{R}$.

