Advanced Algebra H.W(I)

- 1. Let Q denote the ring of real quarternions. For $x = a + bi + cj + dk \in Q$ the conjugate of x is $x^* := a - bi - cj - dk$.
 - (a) Show $(a + bi + cj + dk)(a bi cj dk) = a^2 + b^2 + c^2 + d^2$ for $a, b, c, d \in \mathbb{R}$.
 - (b) Suppose $a_1, b_1, c_1, d_1, a_2, b_2, c_2, d_2 \in \mathbb{Z}$. Show that there exist $a, b, c, d \in \mathbb{Z}$ such that

$$(a_1^2 + b_1^2 + c_1^2 + d_1^2)(a_2^2 + b_2^2 + c_2^2 + d_2^2) = a^2 + b^2 + c^2 + d^2.$$

(c) Suppose $u \in \mathbb{Z}$ and $2u = a^2 + b^2 + c^2 + d^2$ for some $a, b, c, d \in \mathbb{Z}$. Then $u = e^2 + f^2 + g^2 + h^2$ for some $e, f, g, h \in \mathbb{Z}$. (Hint. Try e = (a+b)/2 and f = (a-b)/2.)

Solution:

- (a) Since ij = -ji, jk = -kj, ki = -ik and $i^2 = j^2 = k^2 = -1$, $(a+bi+cj+dk)(a-bi-cj-dk) = a^2 + b^2 + c^2 + d^2$.
- (b) $i^* = -i, j^* = -j, k^* = -k.x = a_1 + b_1i + c_1j + d_1k$, then $x^* = a_1 b_1i c_1j d_1k$. Let $x = a_1 + b_1i + c_1j + d_1k$, $y = a_2 + b_2i + c_2j + d_2k$, Then $(a_1^2 + b_1^2 + c_1^2 + d_1^2)(a_2^2 + b_2^2 + c_2^2 + d_2^2) = xx^*(a_2^2 + b_2^2 + c_2^2 + d_2^2) = x(a_2^2 + b_2^2 + c_2^2 + d_2^2)x^* = x(yy^*)x^* = (xy)(y^*x^*) = (xy)(xy)^*$. $\exists a, b, c, d \text{ s.t } xy^* = a + bi + cj + dk$. Then $(a_1^2 + b_1^2 + c_1^2 + d_1^2)(a_2^2 + b_2^2 + c_2^2 + d_2^2) = a^2 + b^2 + c^2 + d^2$.
- (c) Let $e = \frac{a+b}{2}$, $f = \frac{aub}{2}$. Then $e^2 + f^2 = \frac{1}{2}(a^2 + b^2)$. Similarly to g,h. We want to show e, f, g, h are integers. We only claim that a, b, c, d have even odd numbers. It's easy to see.
- 2. Let R be a commutative ring of prime characteristic p.
 - (a) Show that

$$(a+b)^{p^n} = a^{p^n} + b^{p^n}$$

for all $a, b \in \mathbb{N}$.

(b) Show that the map $f : R \to R$ given by $f(a) = a^p$ is a homomorphism of rings.

Solution:

(a) By induction on *n*.

$$n = 1, (a + b)^p = \sum_{i=0}^{i=p} {p \choose i} a^i b^{p-i} = a^p + b^p$$
.
 $n = k$ is true. Consider $n = k + 1$.
 $(a + b)^{p^{k+1}} = ((a + b)^{p^k})^p = ((a^{p^k} + b^{p^k}))^p = a^{p^{(k+1)}} + b^{p^{(k+1)}}$.
(b) $f(a + b) = (a + b)^p = a^p + b^p = f(a) + f(b)$, and $f(ab) = (ab)^p = (a^p)(b^p) = f(a)f(b)$. Hence f is a homomorphism.

3. An element a of a ring is *nilpotent* if $a^n = 0$ for some n. Prove that in a commutative ring a + b is nilpotent if a and b are. Show that this result may be false if R is not commutative.

Solution:

(a) Since a, b are nilpotent, $\exists s, t$: integers s.t $a^s = 0$ and $b^s = 0$.

 $(a+b)^{s+t} = \sum_{i=0}^{s+t} {s+t \choose i} a^i b^{s+t-i} = 0. \quad \therefore \text{ if } i \ge s, \text{ then } a^i = 0. \text{ if } i < s, \text{ then } s+t-i > t \text{ this implies } b^{s+t-i} = 0.$

(b)

$$a = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
$$b = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

 $a^2 = b^2 = 0, a, b$ are nilpotent.

$$a+b = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}$$
$$(a+b)^2 = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} : \text{ not nilpotent.}$$

- 4. In a ring R show that the following conditions are equivalent.
 - (a) R has no nonzero nilpotent elements.
 - (b) If $a \in R$ and $a^2 = 0$, then a = 0.

Solution:

 $(a) \Rightarrow (b)$ Trivial. $(b) \Rightarrow (a)$ Suppose $\exists b \neq 0$ is nilpotent. Then $\exists k$: smallest positive integer s.t $b^k = 0$ Case 1: if k is even. Let $k = 2d, d \geq 1$. $b^k = b^{2d} = ((b^d))^2 = 0$. By (b), $b^d = 0$, a contradiction. Case 2: if k is odd. Let $k = 2d + 1, d \geq 1$. $b^k = 0$. $b^k \cdot b = b^{2d+2} = ((b^{d+1}))^2 = 0$. By (b), $b^{d+1} = 0$, a contradiction.

- 5. Give an example of a nonzero homomorphism f : R → R' of rings such that f(1) ≠ 1'. Is it possible 1' in the image of f?
 Solution:
 - (a) $f : \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ by f(n) = (n, 0). $\forall n \in \mathbb{Z}$
 - (b) N0. Suppose $\exists a \in R$ s.t f(a) = 1'. Then $1' = f(a) = f(1 \cdot a) = f(1) \cdot f(a) = f(1) \cdot 1' = f(1)$, a contradiction.
- 6. Find a nonidentity homorphism ϕ of \mathbb{R} into \mathbb{R} .

Solution: Define $\phi : \mathbb{R} \to \mathbb{R}$ by $\phi(a) = 0, \forall a \in \mathbb{R}$.

7. Show that the only ring homomorphism ϕ of \mathbb{R} into \mathbb{R} with $\phi(1) = 1$ is the identity.

Solution:

$$\begin{split} \phi: \mathbb{R} &\to \mathbb{R} \text{ s.t } \phi(1) = 1. \\ \forall k \in \mathbb{N}, \phi(k) = \phi(1+1+\dots+1) = \phi(1) + \phi(1) + \dots \phi(1) = 1+1+\dots+1 = k. \\ 0 &= \phi(0) = \phi(k-k) = \phi(k) + \phi(-k) \Rightarrow \phi(-k) = -k. \\ \forall a \in \mathbb{Z}, 1 = \phi(a \cdot \frac{1}{a}) = \phi(a) \cdot \phi(\frac{1}{a}) = a \cdot \phi(\frac{1}{a}) \Rightarrow \phi(\frac{1}{a}) = \frac{1}{a}. \\ \forall a, b \in \mathbb{Z}, \phi(\frac{b}{a}) = \phi(b) \cdot \phi(\frac{1}{a}) = b \cdot \frac{1}{a} = \frac{b}{a}. \\ \forall x \in \mathbb{R}, \phi(x^2) = \phi(x) \cdot \phi(x) = (\phi(x))^2. \\ \forall x \in \mathbb{R}^+, \phi(x) = \phi(\sqrt{x})^2 > 0. \\ \forall a, b \in \mathbb{R} and a - b > 0, \phi(a - b) = \phi(a) - \phi(b) > 0, \text{ This implies } \phi(a) > phi(b). \\ \forall x \in \mathbb{R}. \text{ Suppose } \phi(a) = c, \text{ where } a \neq c. \text{ W.L.O.G, suppose } a > c. \text{ Then } \exists r \in \mathbb{Q} \text{ s.t } a > r > c. \ c = \phi(a) > \phi(r) = r > c, \text{ a contradiction. Hence } \phi(a) = a, \forall a \in \mathbb{R}. \end{split}$$