\documentclass[12pt]{exam} \marginparwidth 0pt \oddsidemargin 0pt \evensidemargin 0pt \marginparsep 0pt \topmargin 0pt \textwidth 6.5in \textheight 10.5 in %\hoffset 0.1in \voffset -0.8in \addpoints \usepackage{CJK} \usepackage{amsmath, amssymb} \usepackage{multicol} \begin{CJK*}{Bg5}{cjk} \CJKtilde \title{進階代數(上)第二次作業} \date{2008~年九月二十二日} \end{CJK*} \author{上課老師: 翁志文 } \boxedpoints \pointname{分} \begin{document} \begin{CJK*}{Bg5}{cjk} \CJKtilde \maketitle %\begin{center} % \fbox{\fbox{\parbox{5.2in}{\centering % 這份試卷有 \ \numquestions\ 大題,\ 共計\ \numpoints\ % 分.\ 請詳細提供所有過程!}}} %\end{center}\vspace{0.1in} We always assume that a ring $R$ has the multiplication identity $1.$ \bigskip \begin{questions} \question (林家銘) Let $A$, $B$ be ideals of a ring $R.$ Show that $AB$ is an ideal of $R,$ where $$AB:=\{a_1b_1+a_2b_2+\cdots+a_nb_n~|~a_i\in A, b_i\in B\}.$$ \question (林育生) Let $R$ be a commutative ring and $P$ be an ideal of $R.$ Show that $P$ is prime if and only if the quotient ring $R/P$ is an integral domain. \question Let $M$ be an ideal of a ring $R.$ $M$ is said to be {\it maximal} if $M\not= R$ and for any ideals $N$, we have $$M\subseteq N\subseteq R\Longrightarrow N=M~{\rm or~}N=R.$$ \begin{parts} \part (陳建文) Show that if $M$ is a maximal ideal and $R$ is commutative then the quotient ring $R/M$ is a field. \part (羅健峰) Show that if the quotient ring $R/M$ is a division ring, then $M$ is maximal. \part (何昕暘) Give an example of a maximal ideal $M$ in a ring $R$ such that $R/M$ is not a division ring. \end{parts} \question \begin{parts} \part (賴德展 ) Let $I_1$, $I_2,$ $I_3$ be ideals of a ring $R$ such that $I_i+(I_j\cap I_k)=R$ for $\{i, j, k\}=\{1, 2, 3\}.$ Show that for any $a_1, a_2, a_3\in R$ there exists $a\in R$ such that $a-a_i\in I_i$ for all $i\in\{1, 2, 3\}.$ (Hint. For each $a_i$ there exists $b_i\in I_i$ and $c_i\in I_j\cap I_k$ such that $b_i+c_i=a_i.$) \part (洪湧昇) Let $I_1$, $I_2,$ $I_3$ be ideals of a ring $R$ such that $I_i+(I_j\cap I_k)=R$ for $\{i, j, k\}=\{1, 2, 3\}.$ Show that $R/(I_1\cap I_2\cap I_3)$ is isomorphic to direct product $R/I_1\times R/I_2\times R/I_3:=\{(\overline{a_1}, \overline{a_2}, \overline{a_3})~|~\overline{a_i}\in R/I_i\}$ of rings $R/I_1$, $R/I_2$ and $R/I_3$ with addition and multiplication are defined componentwise. \part (林志峰) Let $n_1, n_2, n_3$ be positive integers such that any two of them are relative primes. Show that for any integers $a_1, a_2, a_3$ there exists an integer $a$ such that $a\equiv a_i\pmod {n_i}$ for $i=1, 2, 3.$ (這是中國餘式定理) \part (呂融昇) Let $n_1, n_2, n_3$ be positive integers such that any two of them are relative primes. Show that $\mathbb{Z}/(lcm(n_1, n_2, n_3))$ is isomorphic to $\mathbb{Z}/(n_1)\times \mathbb{Z}/(n_2)\times \mathbb{Z}/(n_3).$ \end{parts} \question An ideal $J$ is {\it radical} of $R$ if $a^n\in J$ for some positive integer $n$ implies $a\in J.$ Let $I$ be an ideal of a commutative ring $R$ and set $$\sqrt{I}:=\{a\in R~|~a^n\in I~{\rm for~some~positive~integer~}n\}.$$ \begin{parts} \part (連敏筠) Find $\sqrt{(24)}$ in $\mathbb{Z}.$ \part (施智懷) Show that $\sqrt{I}$ is a radical ideal of $R.$ \end{parts} \end{questions} \end{CJK*} \end{document}