進階代數（上）第二次作業

上課老師：翁志文

2008 年九月二十二日

We always assume that a ring R has the multiplication identity 1.

1．（林家銘）Let A, B be ideals of a ring R ．Show that $A B$ is an ideal of R ，where

$$
A B:=\left\{a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} \mid a_{i} \in A, b_{i} \in B\right\} .
$$

2．（林育生）Let R be a commutative ring and P be an ideal of R ．Show that P is prime if and only if the quotient ring R / P is an integral domain．

3．Let M be an ideal of a ring R ．M is said to be maximal if $M \neq R$ and for any ideals N ， we have

$$
M \subseteq N \subseteq R \Longrightarrow N=M \text { or } N=R
$$

（a）（陳建文）Show that if M is a maximal ideal and R is commutative then the quotient ring R / M is a field．
（b）（羅健峰）Show that if the quotient ring R / M is a division ring，then M is maximal．
（c）（何昕暘）Give an example of a maximal ideal M in a ring R such that R / M is not a division ring．

4．（a）（賴德展）Let I_{1}, I_{2}, I_{3} be ideals of a ring R such that $I_{i}+\left(I_{j} \cap I_{k}\right)=R$ for $\{i, j, k\}=\{1,2,3\}$ ．Show that for any $a_{1}, a_{2}, a_{3} \in R$ there exists $a \in R$ such that $a-a_{i} \in I_{i}$ for all $i \in\{1,2,3\}$ ．（Hint．For each a_{i} there exists $b_{i} \in I_{i}$ and $c_{i} \in I_{j} \cap I_{k}$ such that $b_{i}+c_{i}=a_{i}$ ．）
（b）（洪湧昇）Let I_{1}, I_{2}, I_{3} be ideals of a ring R such that $I_{i}+\left(I_{j} \cap I_{k}\right)=R$ for $\{i, j, k\}=\{1,2,3\}$ ．Show that $R /\left(I_{1} \cap I_{2} \cap I_{3}\right)$ is isomorphic to direct product $R / I_{1} \times R / I_{2} \times R / I_{3}:=\left\{\left(\overline{a_{1}}, \overline{a_{2}}, \overline{a_{3}}\right) \mid \overline{a_{i}} \in R / I_{i}\right\}$ of rings $R / I_{1}, R / I_{2}$ and R / I_{3} with addition and multiplication are defined componentwise．
（c）（林志峰）Let n_{1}, n_{2}, n_{3} be positive integers such that any two of them are relative primes．Show that for any integers a_{1}, a_{2}, a_{3} there exists an integer a such that $a \equiv a_{i}\left(\bmod n_{i}\right)$ for $i=1,2,3$ ．（這是中國餘式定理）
（d）（呂融昇）Let n_{1}, n_{2}, n_{3} be positive integers such that any two of them are relative primes．Show that $\mathbb{Z} /\left(l\right.$ lcm $\left.\left(n_{1}, n_{2}, n_{3}\right)\right)$ is isomorphic to $\mathbb{Z} /\left(n_{1}\right) \times \mathbb{Z} /\left(n_{2}\right) \times \mathbb{Z} /\left(n_{3}\right)$ ．

5．An ideal J is radical of R if $a^{n} \in J$ for some positive integer n implies $a \in J$ ．Let I be an ideal of a commutative ring R and set

$$
\sqrt{I}:=\left\{a \in R \mid a^{n} \in I \text { for some positive integer } n\right\} .
$$

（a）（連敏筠）Find $\sqrt{(24)}$ in \mathbb{Z} ．
（b）（施智懷）Show that \sqrt{I} is a radical ideal of R ．

