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October 20, 2008

1. Let z = a + bi ∈ C where a, b ∈ R, and N(z) := a2 + b2 is the norm of z. Let
Z[
√
−d] := {a + b

√
−d | a, b ∈ Z}, where d ∈ N.

(a) Show N(zz′) = Z(z)N(z′) for z, z′ ∈ C.

(b) For z ∈ Z[
√
−d] show that N(z) is a nonnegative integer.

(c) Show that the element z ∈ Z[
√
−d] is a unit if and only if N(z) = 1.

(d) Let N(z) be a prime integer. Show hat z is irreducible in Z[
√
−d].

(e) Find all units of Z[
√
−5].

(f) Show that 3 is irreducible in Z[
√
−5].

(g) Show that 3 is not a prime in Z[
√
−5].

Solution:

(a) Since N(z) = zz, N(zz′) = zz′ · zz′ = zz′zz′ = zzz′z′ = N(z)N(z′).

(b) Let z ∈ Z[
√
−d]. Then z = a + b

√
−d = a + b

√
di. N(z) = a2 + b2d ∈ N, since

a, b ∈ Z and d ∈ N.

(c) (⇒) Let z = a + b
√
−d = a + b

√
−d is a unit. Then ∃z′ s.t zz′ = 1. N(1) =

N(z)N(z′). This implies N(z) = 1.
(⇐) z = a + b

√
−d ∈ Z[

√
−d]. N(z) = a2 + b2d = 1. Take z′ = a − b

√
−d.

zz′ = (a + b
√
−d)(a− b

√
−d) = a2 + b2d = 1. Hence z is a unit.

(d) N(z) is a prime. Then z 6= 0 and z is not a unit. Let z = z1z2.
Claim: z1 is a unit or z2 is a unit.
p = N(z) = N(z1)N(z2), where p is a prime integer. W.L.O.G, N(z1) = 1, by (c),
z1 is a unit.

(e) Let z = a+ b
√
−5 ∈ Z[

√
−5] be a unit. By (c), N(z) = 1. Then a2 +5b2 = 1. Since

a, b ∈ Z, a = ±1 and b = 0. Thus z = ±1.

(f) 3 6= 0 and 3 is not a unit. ∵ N(3) = 9 6= 1. Suppose 3 = αβ, where α =
a + b

√
−5, β = a′ + b′

√
−5, a, b, a′, b′ ∈ Z. Claim: α or β is unit

Suppose not. α and β are not unit. By (a), we have N(α)N(β) = N(3) = 9.
By (c), α, β are not unit. N(α) and N(β) are not equal to 1. Thus, we have
N(α) = N(β) = 3. That is a2 + 5b2 = 3 and a′2 + 5b′2 = 3, a, b, a′, b′ ∈ Z. This is
impossible. Hence α or β is unit.

(g) 3 6= 0 and 3 is not a unit. 3 | 6 = (1 +
√
−5)(1 −

√
−5). But 3 - (1 +

√
−5).

∵ N(3) = 9 - N(1 +
√
−5) = 6. Similarly 3 - (1−

√
−5). Hence 3 is not a prime in

Z[
√
−5].

2. Let S be a nonempty subset of a commutative ring R. An element d ∈ R is said to be
a greatest common divisor of X if (i) d|a for all a ∈ S; (ii) If c|a for all a ∈ S, then c|d.
The least common multiple of X can be defined similarly.

(a) Find the greatest common divisor of 2 and 1 +
√
−5 in Z[

√
−5].
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(b) Find the greatest common divisor of 6− 6
√
−5 and 18 in Z[

√
−5].

Solution:

(a) N(1 +
√
−5) = 6 =

{
2× 3 By (f), this is impossible.
1× 6

∵ ∀z, N(z) 6= 3, by (f). By (c), 1+
√
−5 = zz′, one of them is unit. Hence 1+

√
−5

is irreducible. 1 +
√
−5 = 1× (1 +

√
−5) = (−1)× (−1−

√
−5).

2 = (1 +
√
−5)× (a + b

√
−5) = (a− 5b) + (a + b)

√
−5.

This implies that

{
a− 5b = 2
a + b = 0

Then b = −1
3
, a = 1

3
, a contradiction.

(∵ a, b ∈ Z.) Hence gcd(1 +
√
−5, 2) = 1.

(b) Suppose gcd(6− 6
√
−5, 18) = a.

Then (1) 6 | a and (2) a,b are associate. a = 6c and N(c) 6= 1.
Then

1. N(a) = N(6)N(c) = 36N(c).

2. N(a) | N(18) = 22 × 34. and N(a) | N(6− 6
√
−5) = 23 × 33.

Then 36 | N(a). Thus N(a) = 36×3. This implies N(c) = 3, a contradiction. Hence
no such a exists.

3. An commutative integral domain D is a Euclidean domain if there is a function µ :
D \ {0} → N such that for all a, b ∈ D with b 6= 0, there exist q, r ∈ D such that
a = bq + r, where r = 0 or µ(r) < µ(b).

(a) Show that Z is a Euclidean domain.

(b) Show that every Euclidean domain is a principal ideal domain.

(c) Show that the ring Z[
√
−1] is a Euclidean domain.

(d) Find all units of Z[
√
−1].

(e) Determine all the prime elements in Z[
√
−1].

Solution:

(a) Z is a commutative integral domain. Define µ(b) = |b|, b 6= 0. ∀a, b ∈ Z, b 6=
0,∃q, r ∈ Z s.t a = bq + r, 0 ≤ r < |b| = µ(b). Then µ(r) < µ(b).

(b) Let I be a nonzero ideal in D. Let b ∈ I s.t µ(b) is the least integer in the set
{µ(x)|x ∈ I}. If a ∈ I, ∃q, r ∈ D s.t a = bq + r where r = 0 or µ(r) < µ(b).
∵ a ∈ I, bq ∈ I ⇒ r ∈ I. Since µ(b) is the least integer, r = 0. Then a = bq.
Therefore I ⊆ (b).
(b) ⊆ I is clear. Hence I = (b).

(c) Z[
√
−1] = {m + ni|m, n ∈ Z}.

∀a, b ∈ Z[
√
−1],∃q, r ∈ Z[

√
−1] s.t a = bq + r.

Define µ : Z[
√
−1] → N by µ(z) = a2 + b2 where z = a + bi.

Let a = a1 + a2i, b = b1 + b2i,
a
b

= s + ti, s, t ∈ Q.
Let m,n ∈ Z s.t |s−m| ≤ 1

2
, |t− n| ≤ 1

2
. q = m + ni, r = a− bq.

µ(r) = µ(b(a
b
− q)) = µ(b)µ(a

b
− q) = µ(b)((s−m)2 + (t−n)2) ≤ µ(b)[(1

2
)2 + (1

2
)2] <

µ(b). Then µ(r) < µ(b).

(d) Let S be the set of all units in Z[
√
−1]. Then S = {a + bi|a, b ∈ Zand a2 + b2 = 1}.

a2 + b2 = 1, ∵ a, b ∈ Z ∴ a2, b2 ≥ 0 and a2, b2 ∈ Z. Then

{
a2 = 1
b2 = 0

or{
a2 = 0
b2 = 1

. Thus

{
a = ±1
b = 0

or

{
a = 0
b = ±1

. This implies S = {±1,±i}.
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(e) Note that an irreducible element in Z[i] is the same as a prime element in Z[i] since
Z[i] is UFD. We claim that α ∈ Z[i] is irreducible if and only if exactly one of the
following holds: (1) N(α) = 2, (2)N(α) ≡ 1 (mod 4) is a prime, (3)α = cp, where
c is a unit in Z[i], and p ≡ 3 (mod 4) is a prime in Z.

Lemma 1 α is irreducible iff α is irreducible.

Proof This is clear.

Lemma 2 If α is irreducible then N(α) = p or p2, where p is a prime. Furthermore
in the case N(α) = p2 we must have α = cp for some unit c ∈ Z[i].

Proof. Suppose that α ∈ Z[i] is irreducible. By Lemma 1 and the UFD of Z[i],
αα ∈ Z has two irreducible terms in Z[i] and hence αα has at most two irreducible
terms in Z, i.e. αα = p or pq, where p, q are primes in Z. We have the lemma except
that αα = pq and p 6= q. In this case we can assume α = cp and α = c−1q = cq,
where c is a unit, and then cp = α = cq. This forces p = q, a contradiction.

The following two lemmas are a little harder to prove, so we skip their proof this
time.

Lemma 3 If α ∈ Z and α = 2 or α ≡ 1 (mod 4) then α is not irreducible in Z[i].

Lemma 4 If α ∈ Z is a prime with α ≡ 3 (mod 4) then α is irreducible.

Proof of the Claim. (=⇒) This is immediate from Lemma 1 and Lemma 2.

(⇐=) If α = βγ is not irreducible in Z[i] then αα = βγβγ is not a prime, where
α, β are not units, i.e., N(α), N(β) 6= 1. Then N(α) = αα is a product of two sums,
each a sum of two squares. This is impossible in one of the first two cases (1) or (2),
since N(α) is a prime. In the third case we must have p2 = cpcp = N(α) = ββγγ
and hence p = ββ, a sum of two squares, a contradiction to p ≡ 3 (mod 4).

(f) 11 + 3i = (1− 2i)(1 + 5i) = (1− 2i)(1 + i)(3 + 2i)
8− i = (1− 2i)(2 + 3i). 2 + 3i, 3 + 2i are not associate.
Hence (1− 2i) is the gcd and (1− 2i)(1 + i)(3 + 2i)(2 + 3i) is the lcm.
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