Advanced Algebra HW3

October 20, 2008

- 1. Let $z = a + bi \in \mathbb{C}$ where $a, b \in \mathbb{R}$, and $N(z) := a^2 + b^2$ is the norm of z. Let $\mathbb{Z}[\sqrt{-d}] := \{a + b\sqrt{-d} \mid a, b \in \mathbb{Z}\}$, where $d \in \mathbb{N}$.
 - (a) Show N(zz') = Z(z)N(z') for $z, z' \in \mathbb{C}$.
 - (b) For $z \in \mathbb{Z}[\sqrt{-d}]$ show that N(z) is a nonnegative integer.
 - (c) Show that the element $z \in \mathbb{Z}[\sqrt{-d}]$ is a unit if and only if N(z) = 1.
 - (d) Let N(z) be a prime integer. Show hat z is irreducible in $\mathbb{Z}[\sqrt{-d}]$.
 - (e) Find all units of $\mathbb{Z}[\sqrt{-5}]$.
 - (f) Show that 3 is irreducible in $\mathbb{Z}[\sqrt{-5}]$.
 - (g) Show that 3 is not a prime in $\mathbb{Z}[\sqrt{-5}]$.

Solution:

- (a) Since $N(z) = z\overline{z}$, $N(zz') = zz' \cdot \overline{zz'} = zz'\overline{z}\overline{z'} = z\overline{z}z'\overline{z'} = N(z)N(z')$.
- (b) Let $z \in \mathbb{Z}[\sqrt{-d}]$. Then $z = a + b\sqrt{-d} = a + b\sqrt{d}i$. $N(z) = a^2 + b^2d \in \mathbb{N}$, since $a, b \in \mathbb{Z}$ and $d \in \mathbb{N}$.
- (c) (\Rightarrow) Let $z = a + b\sqrt{-d} = a + b\sqrt{-d}$ is a unit. Then $\exists z' \text{ s.t } zz' = 1$. N(1) = N(z)N(z'). This implies N(z) = 1. (\Leftarrow) $z = a + b\sqrt{-d} \in \mathbb{Z}[\sqrt{-d}]$. $N(z) = a^2 + b^2d = 1$. Take $z' = a - b\sqrt{-d}$. $zz' = (a + b\sqrt{-d})(a - b\sqrt{-d}) = a^2 + b^2d = 1$. Hence z is a unit.
- (d) N(z) is a prime. Then $z \neq 0$ and z is not a unit. Let $z = z_1 z_2$. Claim: z_1 is a unit or z_2 is a unit. $p = N(z) = N(z_1)N(z_2)$, where p is a prime integer. W.L.O.G, $N(z_1) = 1$, by (c), z_1 is a unit.
- (e) Let $z = a + b\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$ be a unit. By (c), N(z) = 1. Then $a^2 + 5b^2 = 1$. Since $a, b \in \mathbb{Z}, a = \pm 1$ and b = 0. Thus $z = \pm 1$.
- (f) $3 \neq 0$ and 3 is not a unit. $\therefore N(3) = 9 \neq 1$. Suppose $3 = \alpha\beta$, where $\alpha = a + b\sqrt{-5}, \beta = a' + b'\sqrt{-5}, a, b, a', b' \in \mathbb{Z}$. Claim: α or β is unit Suppose not. α and β are not unit. By (a), we have $N(\alpha)N(\beta) = N(3) = 9$. By (c), α, β are not unit. $N(\alpha)$ and $N(\beta)$ are not equal to 1. Thus, we have $N(\alpha) = N(\beta) = 3$. That is $a^2 + 5b^2 = 3$ and $a'^2 + 5b'^2 = 3$, $a, b, a', b' \in \mathbb{Z}$. This is impossible. Hence α or β is unit.
- (g) $3 \neq 0$ and 3 is not a unit. $3 \mid 6 = (1 + \sqrt{-5})(1 \sqrt{-5})$. But $3 \nmid (1 + \sqrt{-5})$. $\therefore N(3) = 9 \nmid N(1 + \sqrt{-5}) = 6$. Similarly $3 \nmid (1 - \sqrt{-5})$. Hence 3 is not a prime in $\mathbb{Z}[\sqrt{-5}]$.
- 2. Let S be a nonempty subset of a commutative ring R. An element $d \in R$ is said to be a greatest common divisor of X if (i) d|a for all $a \in S$; (ii) If c|a for all $a \in S$, then c|d. The least common multiple of X can be defined similarly.
 - (a) Find the greatest common divisor of 2 and $1 + \sqrt{-5}$ in $\mathbb{Z}[\sqrt{-5}]$.

(b) Find the greatest common divisor of $6 - 6\sqrt{-5}$ and 18 in $\mathbb{Z}[\sqrt{-5}]$. Solution:

(a)
$$N(1+\sqrt{-5}) = 6 = \begin{cases} 2 \times 3 & \text{By (f), this is impossible.} \\ 1 \times 6 \\ \because \forall z, N(z) \neq 3, \text{ by (f). By (c), } 1+\sqrt{-5} = zz', \text{ one of them is unit. Hence } 1+\sqrt{-5} \\ \text{is irreducible. } 1+\sqrt{-5} = 1 \times (1+\sqrt{-5}) = (-1) \times (-1-\sqrt{-5}). \\ 2 = (1+\sqrt{-5}) \times (a+b\sqrt{-5}) = (a-5b) + (a+b)\sqrt{-5}. \\ \text{This implies that } \begin{cases} a-5b=2 \\ a+b=0 \\ a+b=0 \end{cases} \text{ Then } b = -\frac{1}{3}, a = \frac{1}{3}, \text{ a contradiction.} \\ (\because a, b \in \mathbb{Z}.) \text{ Hence } gcd(1+\sqrt{-5}, 2) = 1. \end{cases}$$

(b) Suppose $gcd(6 - 6\sqrt{-5}, 18) = a$.

Then (1) 6 | a and (2) a,b are associate. a = 6c and $N(c) \neq 1$. Then

- 1. N(a) = N(6)N(c) = 36N(c).
- 2. $N(a) \mid N(18) = 2^2 \times 3^4$. and $N(a) \mid N(6 6\sqrt{-5}) = 2^3 \times 3^3$.

Then 36 | N(a). Thus $N(a) = 36 \times 3$. This implies N(c) = 3, a contradiction. Hence no such a exists.

- 3. An commutative integral domain D is a *Euclidean domain* if there is a function μ : $D \setminus \{0\} \to \mathbb{N}$ such that for all $a, b \in D$ with $b \neq 0$, there exist $q, r \in D$ such that a = bq + r, where r = 0 or $\mu(r) < \mu(b)$.
 - (a) Show that \mathbb{Z} is a Euclidean domain.
 - (b) Show that every Euclidean domain is a principal ideal domain.
 - (c) Show that the ring $\mathbb{Z}[\sqrt{-1}]$ is a Euclidean domain.
 - (d) Find all units of $\mathbb{Z}[\sqrt{-1}]$.
 - (e) Determine all the prime elements in $\mathbb{Z}[\sqrt{-1}]$.

Solution:

- (a) \mathbb{Z} is a commutative integral domain. Define $\mu(b) = |b|, b \neq 0$. $\forall a, b \in \mathbb{Z}, b \neq 0, \exists q, r \in \mathbb{Z}$ s.t $a = bq + r, 0 \leq r < |b| = \mu(b)$. Then $\mu(r) < \mu(b)$.
- (b) Let I be a nonzero ideal in D. Let b ∈ I s.t μ(b) is the least integer in the set {μ(x)|x ∈ I}. If a ∈ I, ∃q, r ∈ D s.t a = bq + r where r = 0 or μ(r) < μ(b).
 ∴ a ∈ I, bq ∈ I ⇒ r ∈ I. Since μ(b) is the least integer, r = 0. Then a = bq. Therefore I ⊆ (b).
 (b) ⊆ I is clear. Hence I = (b).
- $\begin{array}{ll} ({\rm c}) \ \ \mathbb{Z}[\sqrt{-1}] = \{m+ni|m,n\in\mathbb{Z}\}. \\ \forall a,b\in\mathbb{Z}[\sqrt{-1}], \exists q,r\in\mathbb{Z}[\sqrt{-1}] \ {\rm s.t} \ a=bq+r. \\ {\rm Define} \ \mu:\mathbb{Z}[\sqrt{-1}] \to \mathbb{N} \ {\rm by} \ \mu(z)=a^2+b^2 \ {\rm where} \ z=a+bi. \\ {\rm Let} \ a=a_1+a_2i,b=b_1+b_2i, \frac{a}{b}=s+ti,s,t\in\mathbb{Q}. \\ {\rm Let} \ m,n\in\mathbb{Z} \ {\rm s.t} \ |s-m|\leq \frac{1}{2}, |t-n|\leq \frac{1}{2}. \ q=m+ni,r=a-bq. \\ \mu(r)=\mu(b(\frac{a}{b}-q))=\mu(b)\mu(\frac{a}{b}-q)=\mu(b)((s-m)^2+(t-n)^2)\leq \mu(b)[(\frac{1}{2})^2+(\frac{1}{2})^2] < \\ \mu(b). \ {\rm Then} \ \mu(r)<\mu(b). \end{array}$

(d) Let S be the set of all units in $\mathbb{Z}[\sqrt{-1}]$. Then $S = \{a + bi | a, b \in \mathbb{Z} \text{ and } a^2 + b^2 = 1\}$. $a^2 + b^2 = 1, \because a, b \in \mathbb{Z} \therefore a^2, b^2 \ge 0 \text{ and } a^2, b^2 \in \mathbb{Z}$. Then $\begin{cases} a^2 = 1 \\ b^2 = 0 \end{cases}$ or $\begin{cases} a^2 = 0 \\ b^2 = 1 \end{cases}$. Thus $\begin{cases} a = \pm 1 \\ b = 0 \end{cases}$ or $\begin{cases} a = 0 \\ b = \pm 1 \end{cases}$. This implies $S = \{\pm 1, \pm i\}$. (e) Note that an irreducible element in Z[i] is the same as a prime element in Z[i] since Z[i] is UFD. We claim that $\alpha \in \mathbb{Z}[i]$ is irreducible if and only if exactly one of the following holds: (1) $N(\alpha) = 2$, (2) $N(\alpha) \equiv 1 \pmod{4}$ is a prime, (3) $\alpha = cp$, where c is a unit in $\mathbb{Z}[i]$, and $p \equiv 3 \pmod{4}$ is a prime in \mathbb{Z} .

Lemma 1 α is irreducible iff $\overline{\alpha}$ is irreducible.

Proof This is clear.

Lemma 2 If α is irreducible then $N(\alpha) = p$ or p^2 , where p is a prime. Furthermore in the case $N(\alpha) = p^2$ we must have $\alpha = cp$ for some unit $c \in \mathbb{Z}[i]$.

Proof. Suppose that $\alpha \in \mathbb{Z}[i]$ is irreducible. By Lemma 1 and the UFD of $\mathbb{Z}[i]$, $\alpha \overline{\alpha} \in \mathbb{Z}$ has two irreducible terms in $\mathbb{Z}[i]$ and hence $\alpha \overline{\alpha}$ has at most two irreducible terms in \mathbb{Z} , i.e. $\alpha \overline{\alpha} = p$ or pq, where p, q are primes in \mathbb{Z} . We have the lemma except that $\alpha \overline{\alpha} = pq$ and $p \neq q$. In this case we can assume $\alpha = cp$ and $\overline{\alpha} = c^{-1}q = \overline{c}q$, where c is a unit, and then $\overline{cp} = \overline{\alpha} = \overline{c}q$. This forces p = q, a contradiction.

The following two lemmas are a little harder to prove, so we skip their proof this time.

Lemma 3 If $\alpha \in \mathbb{Z}$ and $\alpha = 2$ or $\alpha \equiv 1 \pmod{4}$ then α is not irreducible in $\mathbb{Z}[i]$. Lemma 4 If $\alpha \in \mathbb{Z}$ is a prime with $\alpha \equiv 3 \pmod{4}$ then α is irreducible.

Proof of the Claim. (\Longrightarrow) This is immediate from Lemma 1 and Lemma 2. (\Leftarrow) If $\alpha = \beta \gamma$ is not irreducible in $\mathbb{Z}[i]$ then $\alpha \overline{\alpha} = \beta \gamma \overline{\beta \gamma}$ is not a prime, where α, β are not units, i.e., $N(\alpha), N(\beta) \neq 1$. Then $N(\alpha) = \alpha \overline{\alpha}$ is a product of two sums, each a sum of two squares. This is impossible in one of the first two cases (1) or (2), since $N(\alpha)$ is a prime. In the third case we must have $p^2 = cp\overline{cp} = N(\alpha) = \beta \overline{\beta} \gamma \overline{\gamma}$ and hence $p = \beta \overline{\beta}$, a sum of two squares, a contradiction to $p \equiv 3 \pmod{4}$.

(f) 11 + 3i = (1 - 2i)(1 + 5i) = (1 - 2i)(1 + i)(3 + 2i) 8 - i = (1 - 2i)(2 + 3i). 2 + 3i, 3 + 2i are not associate. Hence (1 - 2i) is the gcd and (1 - 2i)(1 + i)(3 + 2i)(2 + 3i) is the lcm.