Advanced Algebra HW3

October 20, 2008

1. Let $z=a+b i \in \mathbb{C}$ where $a, b \in \mathbb{R}$, and $N(z):=a^{2}+b^{2}$ is the norm of z. Let $\mathbb{Z}[\sqrt{-d}]:=\{a+b \sqrt{-d} \mid a, b \in \mathbb{Z}\}$, where $d \in \mathbb{N}$.
(a) Show $N\left(z z^{\prime}\right)=Z(z) N\left(z^{\prime}\right)$ for $z, z^{\prime} \in \mathbb{C}$.
(b) For $z \in \mathbb{Z}[\sqrt{-d}]$ show that $N(z)$ is a nonnegative integer.
(c) Show that the element $z \in \mathbb{Z}[\sqrt{-d}]$ is a unit if and only if $N(z)=1$.
(d) Let $N(z)$ be a prime integer. Show hat z is irreducible in $\mathbb{Z}[\sqrt{-d}]$.
(e) Find all units of $\mathbb{Z}[\sqrt{-5}]$.
(f) Show that 3 is irreducible in $\mathbb{Z}[\sqrt{-5}]$.
(g) Show that 3 is not a prime in $\mathbb{Z}[\sqrt{-5}]$.

Solution:
(a) Since $N(z)=z \bar{z}, N\left(z z^{\prime}\right)=z z^{\prime} \cdot \overline{z z^{\prime}}=z z^{\prime} \bar{z} \overline{z^{\prime}}=z \bar{z} z^{\prime} \overline{z^{\prime}}=N(z) N\left(z^{\prime}\right)$.
(b) Let $z \in \mathbb{Z}[\sqrt{-d}]$. Then $z=a+b \sqrt{-d}=a+b \sqrt{d} i . \quad N(z)=a^{2}+b^{2} d \in \mathbb{N}$, since $a, b \in \mathbb{Z}$ and $d \in \mathbb{N}$.
$\left(\right.$ c) (\Rightarrow) Let $z=a+b \sqrt{-d}=a+b \sqrt{-d}$ is a unit. Then $\exists z^{\prime}$ s.t $z z^{\prime}=1 . N(1)=$ $N(z) N\left(z^{\prime}\right)$. This implies $N(z)=1$.
$(\Leftarrow) z=a+b \sqrt{-d} \in \mathbb{Z}[\sqrt{-d}] . N(z)=a^{2}+b^{2} d=1$. Take $z^{\prime}=a-b \sqrt{-d}$. $z z^{\prime}=(a+b \sqrt{-d})(a-b \sqrt{-d})=a^{2}+b^{2} d=1$. Hence z is a unit.
(d) $N(z)$ is a prime. Then $z \neq 0$ and z is not a unit. Let $z=z_{1} z_{2}$.

Claim: z_{1} is a unit or z_{2} is a unit.
$p=N(z)=N\left(z_{1}\right) N\left(z_{2}\right)$, where p is a prime integer. W.L.O.G, $N\left(z_{1}\right)=1$, by (c), z_{1} is a unit.
(e) Let $z=a+b \sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$ be a unit. By (c), $N(z)=1$. Then $a^{2}+5 b^{2}=1$. Since $a, b \in \mathbb{Z}, a= \pm 1$ and $b=0$. Thus $z= \pm 1$.
(f) $3 \neq 0$ and 3 is not a unit. $\because N(3)=9 \neq 1$. Suppose $3=\alpha \beta$, where $\alpha=$ $a+b \sqrt{-5}, \beta=a^{\prime}+b^{\prime} \sqrt{-5}, a, b, a^{\prime}, b^{\prime} \in \mathbb{Z}$. Claim: α or β is unit
Suppose not. α and β are not unit. By (a), we have $N(\alpha) N(\beta)=N(3)=9$. By (c), α, β are not unit. $N(\alpha)$ and $N(\beta)$ are not equal to 1 . Thus, we have $N(\alpha)=N(\beta)=3$. That is $a^{2}+5 b^{2}=3$ and $a^{\prime 2}+5 b^{\prime 2}=3, a, b, a^{\prime}, b^{\prime} \in \mathbb{Z}$. This is impossible. Hence α or β is unit.
(g) $3 \neq 0$ and 3 is not a unit. $3 \mid 6=(1+\sqrt{-5})(1-\sqrt{-5})$. But $3 \nmid(1+\sqrt{-5})$. $\because N(3)=9 \nmid N(1+\sqrt{-5})=6$. Similarly $3 \nmid(1-\sqrt{-5})$. Hence 3 is not a prime in $\mathbb{Z}[\sqrt{-5}]$.
2. Let S be a nonempty subset of a commutative ring R. An element $d \in R$ is said to be a greatest common divisor of X if (i) $d \mid a$ for all $a \in S$; (ii) If $c \mid a$ for all $a \in S$, then $c \mid d$. The least common multiple of X can be defined similarly.
(a) Find the greatest common divisor of 2 and $1+\sqrt{-5}$ in $\mathbb{Z}[\sqrt{-5}]$.
(b) Find the greatest common divisor of $6-6 \sqrt{-5}$ and 18 in $\mathbb{Z}[\sqrt{-5}]$.

Solution:
(a) $N(1+\sqrt{-5})=6=\left\{\begin{array}{l}2 \times 3 \\ 1 \times 6\end{array}\right.$ By (f), this is impossible.
$\because \forall z, N(z) \neq 3$, by (f). By (c), $1+\sqrt{-5}=z z^{\prime}$, one of them is unit. Hence $1+\sqrt{-5}$ is irreducible. $1+\sqrt{-5}=1 \times(1+\sqrt{-5})=(-1) \times(-1-\sqrt{-5})$.
$2=(1+\sqrt{-5}) \times(a+b \sqrt{-5})=(a-5 b)+(a+b) \sqrt{-5}$.
This implies that $\left\{\begin{array}{l}a-5 b=2 \\ a+b=0\end{array}\right.$ Then $b=-\frac{1}{3}, a=\frac{1}{3}$, a contradiction.
$(\because a, b \in \mathbb{Z}$.) Hence $\operatorname{gcd}(1+\sqrt{-5}, 2)=1$.
(b) Suppose $\operatorname{gcd}(6-6 \sqrt{-5}, 18)=a$.

Then (1) $6 \mid a$ and (2) a,b are associate. $a=6 c$ and $N(c) \neq 1$.
Then

1. $N(a)=N(6) N(c)=36 N(c)$.
2. $N(a) \mid N(18)=2^{2} \times 3^{4}$. and $N(a) \mid N(6-6 \sqrt{-5})=2^{3} \times 3^{3}$.

Then $36 \mid N(a)$. Thus $N(a)=36 \times 3$. This implies $N(c)=3$, a contradiction. Hence no such a exists.
3. An commutative integral domain D is a Euclidean domain if there is a function μ : $D \backslash\{0\} \rightarrow \mathbb{N}$ such that for all $a, b \in D$ with $b \neq 0$, there exist $q, r \in D$ such that $a=b q+r$, where $r=0$ or $\mu(r)<\mu(b)$.
(a) Show that \mathbb{Z} is a Euclidean domain.
(b) Show that every Euclidean domain is a principal ideal domain.
(c) Show that the ring $\mathbb{Z}[\sqrt{-1}]$ is a Euclidean domain.
(d) Find all units of $\mathbb{Z}[\sqrt{-1}]$.
(e) Determine all the prime elements in $\mathbb{Z}[\sqrt{-1}]$.

Solution:
(a) \mathbb{Z} is a commutative integral domain. Define $\mu(b)=|b|, b \neq 0 . \forall a, b \in \mathbb{Z}, b \neq$ $0, \exists q, r \in \mathbb{Z}$ s.t $a=b q+r, 0 \leq r<|b|=\mu(b)$. Then $\mu(r)<\mu(b)$.
(b) Let I be a nonzero ideal in D. Let $b \in I$ s.t $\mu(b)$ is the least integer in the set $\{\mu(x) \mid x \in I\}$. If $a \in I, \exists q, r \in D$ s.t $a=b q+r$ where $r=0$ or $\mu(r)<\mu(b)$. $\because a \in I, b q \in I \Rightarrow r \in I$. Since $\mu(b)$ is the least integer, $r=0$. Then $a=b q$. Therefore $I \subseteq(b)$.
(b) $\subseteq I$ is clear. Hence $I=(b)$.
(c) $\mathbb{Z}[\sqrt{-1}]=\{m+n i \mid m, n \in \mathbb{Z}\}$.
$\forall a, b \in \mathbb{Z}[\sqrt{-1}], \exists q, r \in \mathbb{Z}[\sqrt{-1}]$ s.t $a=b q+r$.
Define $\mu: \mathbb{Z}[\sqrt{-1}] \rightarrow \mathbb{N}$ by $\mu(z)=a^{2}+b^{2}$ where $z=a+b i$.
Let $a=a_{1}+a_{2} i, b=b_{1}+b_{2} i, \frac{a}{b}=s+t i, s, t \in \mathbb{Q}$.
Let $m, n \in \mathbb{Z}$ s.t $|s-m| \leq \frac{1}{2},|t-n| \leq \frac{1}{2} . q=m+n i, r=a-b q$.
$\mu(r)=\mu\left(b\left(\frac{a}{b}-q\right)\right)=\mu(b) \mu\left(\frac{a}{b}-q\right)=\mu(b)\left((s-m)^{2}+(t-n)^{2}\right) \leq \mu(b)\left[\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}\right]<$ $\mu(b)$. Then $\mu(r)<\mu(b)$.
(d) Let S be the set of all units in $\mathbb{Z}[\sqrt{-1}]$. Then $S=\left\{a+b i \mid a, b \in \mathbb{Z}\right.$ and $\left.a^{2}+b^{2}=1\right\}$. $a^{2}+b^{2}=1, \because a, b \in \mathbb{Z} \therefore a^{2}, b^{2} \geq 0$ and $a^{2}, b^{2} \in \mathbb{Z}$. Then $\left\{\begin{array}{l}a^{2}=1 \\ b^{2}=0\end{array}\right.$ or $\left\{\begin{array}{l}a^{2}=0 \\ b^{2}=1\end{array}\right.$. Thus $\left\{\begin{array}{l}a= \pm 1 \\ b=0\end{array}\right.$ or $\left\{\begin{array}{l}a=0 \\ b= \pm 1\end{array}\right.$. This implies $S=\{ \pm 1, \pm i\}$.
(e) Note that an irreducible element in $Z[i]$ is the same as a prime element in $Z[i]$ since $Z[i]$ is UFD. We claim that $\alpha \in \mathbb{Z}[i]$ is irreducible if and only if exactly one of the following holds: (1) $N(\alpha)=2,(2) N(\alpha) \equiv 1(\bmod 4)$ is a prime, (3) $\alpha=c p$, where c is a unit in $\mathbb{Z}[i]$, and $p \equiv 3(\bmod 4)$ is a prime in \mathbb{Z}.
Lemma 1α is irreducible iff $\bar{\alpha}$ is irreducible.
Proof This is clear.
Lemma 2 If α is irreducible then $N(\alpha)=p$ or p^{2}, where p is a prime. Furthermore in the case $N(\alpha)=p^{2}$ we must have $\alpha=c p$ for some unit $c \in \mathbb{Z}[i]$.
Proof. Suppose that $\alpha \in \mathbb{Z}[i]$ is irreducible. By Lemma 1 and the UFD of $\mathbb{Z}[i]$, $\alpha \bar{\alpha} \in \mathbb{Z}$ has two irreducible terms in $\mathbb{Z}[i]$ and hence $\alpha \bar{\alpha}$ has at most two irreducible terms in \mathbb{Z}, i.e. $\alpha \bar{\alpha}=p$ or $p q$, where p, q are primes in \mathbb{Z}. We have the lemma except that $\alpha \bar{\alpha}=p q$ and $p \neq q$. In this case we can assume $\alpha=c p$ and $\bar{\alpha}=c^{-1} q=\bar{c} q$, where c is a unit, and then $\overline{c p}=\bar{\alpha}=\bar{c} q$. This forces $p=q$, a contradiction.
The following two lemmas are a little harder to prove, so we skip their proof this time.
Lemma 3 If $\alpha \in \mathbb{Z}$ and $\alpha=2$ or $\alpha \equiv 1(\bmod 4)$ then α is not irreducible in $\mathbb{Z}[i]$.
Lemma 4 If $\alpha \in \mathbb{Z}$ is a prime with $\alpha \equiv 3(\bmod 4)$ then α is irreducible.
Proof of the Claim. (\Longrightarrow) This is immediate from Lemma 1 and Lemma 2. (\Longleftarrow) If $\alpha=\beta \gamma$ is not irreducible in $\mathbb{Z}[i]$ then $\alpha \bar{\alpha}=\beta \gamma \overline{\beta \gamma}$ is not a prime, where α, β are not units, i.e., $N(\alpha), N(\beta) \neq 1$. Then $N(\alpha)=\alpha \bar{\alpha}$ is a product of two sums, each a sum of two squares. This is impossible in one of the first two cases (1) or (2), since $N(\alpha)$ is a prime. In the third case we must have $p^{2}=c p \overline{c p}=N(\alpha)=\beta \bar{\beta} \gamma \bar{\gamma}$ and hence $p=\beta \bar{\beta}$, a sum of two squares, a contradiction to $p \equiv 3(\bmod 4)$.
(f) $11+3 i=(1-2 i)(1+5 i)=(1-2 i)(1+i)(3+2 i)$
$8-i=(1-2 i)(2+3 i) .2+3 i, 3+2 i$ are not associate.
Hence $(1-2 i)$ is the $g c d$ and $(1-2 i)(1+i)(3+2 i)(2+3 i)$ is the $l c m$.

