進階代數（上）第四次作業

上課老師：翁志文

2008 年十月二日

1．（林志峰）Determine the complete ring of quotients of the ring \mathbb{Z}_{n} for each $n \geq 2$ ．
2．（呂融昇）Let R be an integral domain with quotient field F ．Let T be an integral domain such that $R \subseteq T \subseteq F$ ．Show that the quotient field of T is isomorphic to F ．

3．Let S be a multiplicative subset of an integral domain R such that $0 \notin S$ ．
（a）（羅元勳）Show that if R is an integral domain，then so is $S^{-1} R$ ．
（b）（連敏笉）Show that if R is a unique factorization domain，then so is $S^{-1} R$ ．
4．（施智懷）Let S be a multiplicative subset of a commutative ring R ．Show that for each prime ideal P^{\prime} of $S^{-1} R$ there exists a prime ideal P of R such that $P^{\prime}=S^{-1} P$ ．

5．Let P be a prime ideal in a commutative ring R ．
（a）（邱鈺傑）Show that there is a one－to－one correspondence between the set of prime ideals Q which are contained in P and the set of prime ideals of R_{P} ，given by $Q \rightarrow Q_{P}$ ．
（b）（裴若宇）Show that the ideal P_{P} in R_{P} is the unique maximal ideal of R_{P} ．
（c）（蕭雯華）Give a ring R with two distinct prime ideals P, Q such that $Q \subseteq P$ ．
6．（林逸軒）Let M be a maximal ideal in a commutative ring R with identity and n be a positive integer．Show that the quotient ring R / M^{n} has a unique prime ideal and therefore is local．

7．（陳巧玲）Let R be a commutative ring with identity．Show that R is local if and only if for all $r, s \in R$ ，

$$
r+s=1 \Rightarrow r \text { or } s \text { is a unit. }
$$

8．Let R be a commutative ring with identity．Consider the following three statements．
（i）R has a unique prime ideal．
（ii）Every nonunit is nilpotent．
（iii）R has a minimal prime ideal which contains all zero divisors，and all nonunits of R are zero divisors．
（a）（李光祥）Find a ring R ，which is not a field，satisfying the above conditions（i）－（iii）．
（b）（林詒琪）Show（ii）\Rightarrow（i）．
（c）（葉彬）Show（i）\Rightarrow（iii）．
（d）（林家銘）Show（iii）\Rightarrow（ii）．

