進階代數(上) 第四次作業

上課老師: 翁志文

2008年十月二日

- 1. (林志峰) Determine the complete ring of quotients of the ring \mathbb{Z}_n for each $n \geq 2$.
- 2. (呂融昇) Let R be an integral domain with quotient field F. Let T be an integral domain such that $R \subseteq T \subseteq F$. Show that the quotient field of T is isomorphic to F.
- 3. Let S be a multiplicative subset of an integral domain R such that $0 \notin S$.
 - (a) (羅元勳) Show that if R is an integral domain, then so is $S^{-1}R$.
 - (b) (運敏筠) Show that if R is a unique factorization domain, then so is $S^{-1}R$.
- 4. (施智懷) Let S be a multiplicative subset of a commutative ring R. Show that for each prime ideal P' of $S^{-1}R$ there exists a prime ideal P of R such that $P' = S^{-1}P$.
- 5. Let P be a prime ideal in a commutative ring R.
 - (a) (邱鈺傑) Show that there is a one-to-one correspondence between the set of prime ideals Q which are contained in P and the set of prime ideals of R_P , given by $Q \to Q_P$.
 - (b) (裴若宇) Show that the ideal P_P in R_P is the unique maximal ideal of R_P .
 - (c) (蕭雯華) Give a ring R with two distinct prime ideals P, Q such that $Q \subseteq P$.
- 6. (林逸軒) Let M be a maximal ideal in a commutative ring R with identity and n be a positive integer. Show that the quotient ring R/M^n has a unique prime ideal and therefore is local.
- 7. (陳巧玲) Let R be a commutative ring with identity. Show that R is local if and only if for all $r, s \in R$,

 $r + s = 1 \Rightarrow r \text{ or } s \text{ is a unit.}$

- 8. Let R be a commutative ring with identity. Consider the following three statements.
- (i) R has a unique prime ideal.
- (ii) Every nonunit is nilpotent.
- (iii) R has a minimal prime ideal which contains all zero divisors, and all nonunits of R are zero divisors.
 - (a) (李光祥) Find a ring R, which is not a field, satisfying the above conditions (i)-(iii).
 - (b) (林詒琪) Show (ii)⇒(i).
 - (c) (葉彬) Show (i) \Rightarrow (iii).
 - (d) (林家銘) Show (iii)⇒(ii).