- (a) $R = \mathbb{Z}_4 = \{0, 1, 2, 3\}$ unit:1,3 nonunit:0,2 nilpotent:0,2 zero division:2
 - (i) $P \subseteq R$ $\{0\},\{0,2\}$
 - (ii) ✓
 - (iii) ✓
- (b) M: nonunit is nilpotent. M is maximal ideal of R. $a, b \in M, (a b)^n \in M$. $(ra)^n = 0 = (ar)^n, r \in R$. M is ideal. $M \subseteq N \subseteq R$. $M \neq N$. N = R. $\exists a \in unit \in R$. M is maximal ideal. Let P be a prime ideal of R. $P \subseteq M$. Show $M \subseteq P$. $a \in M$. $a^n = 0$.
 - (i) $a \in P$,done.

 $aa^{n-1} = 0.$

- (ii) $a^{n-1} \in P$. $a \cdot a^{n-2}$ \vdots $a \in P$ $\Rightarrow M \subseteq P$.
- (c) Let P be the unique prime ideal. $P \mapsto P_P$ is (unique) maximal ideal in R_P . $\therefore^{R_P} \nearrow_{P_P}$ is a field. Suppose $a \in R$ is a zero divisor. $\therefore \frac{a}{1}$ is a zero divisor in R_P . $\Rightarrow \frac{a}{1} \in P_P = \{\frac{r}{t} | r \in P, t \text{ not } inP\}$. $\Rightarrow (at - r)s = 0 \text{ for some } r \in P, t \text{ not } inP_1, S \in R - P$. $\Rightarrow ats = rs \in P$. $\Rightarrow a \in P$. Since P is prime.

- $(i) \Rightarrow (ii) P$ is maximal prime ideal if
 - (1)P is a prime ideal.
 - (2) If P' is a prime ideal and $P' \subseteq P$, then P = P'.
- $(iii) \Rightarrow (ii)$ Let P be min prime ideal in R.

Let \mathbb{Z} be the set of zero divisor.

Let N be the set of nonunits.

By (iii), $\mathbb{Z} \subseteq P$ and $N \subseteq \mathbb{Z}$.

Hence $N = \mathbb{Z}$.

Since \mathbb{Z} is prime, $\mathbb{Z} = P = N$.

Hence R is local.

 $C = \{I | I \text{ an ideal in } R, \text{ with } I \cap S = \emptyset\}.$

Take a "maximal" element Q in C.

Then Q is a prime ideal and $Q \neq R$.

Hence $P = Q \rightarrow \leftarrow \text{since } Q \cap S = \emptyset$.

$$P \cap S = \emptyset$$
.

Then $0 \in S$.

- (d) P: min prime ideal $\subseteq R$.
 - \mathbb{Z} : all zero divisor for R.

 $\mathbb{Z} \subseteq R$.

N: all nonunit $N \nsubseteq \mathbb{Z}$.

prove $x \in N, x^n = 0$ for some n.

 $P \supseteq N \Rightarrow P$ is a maxi ideal.

 $\therefore P$ is min prime ideal.

 $\therefore P$ is unique prime ideal.

 $x \in N$.

 $x^n \neq 0 \forall n$.

$$S = \{x^n | n = 1, 2, \dots\}.$$

C is a collection.

$$C = \{ I \lhd R : I \cup S = \emptyset \}.$$

 (C,\subseteq) partial order set.

Take a maximal chain in C and let Q be the union of the chain.

Note $Q \in C$.

 $a, b \in R, ab \in Q.$

Suppose a not inQ, b not inQ.

 $a \in Q + (a), b \in Q + (b).$

But Q is max in $C \Rightarrow Q + (a) \cap S$.

$$\Rightarrow \exists x^i \in Q + (a) \cap S, x^i \in Q + (b) \cap S.$$

$$\Rightarrow x^{i+h} \in (Q+(a))(Q+(b)) \subseteq Q+(ab)=Q \rightarrow \leftarrow$$

 \Rightarrow Q is a prime ideal.

But $Q = P \rightarrow \leftarrow$

 $\Rightarrow x^n = 0$ for some n.