(a) $R=\mathbb{Z}_{4}=\{0,1,2,3\}$
unit:1,3
nonunit:0,2
nilpotent:0,2
zero division:2
(i) $P \subseteq R$
$\{0\},\{0,2\}$
(ii) \checkmark
(iii) \checkmark
(b) M : nonunit is nilpotent.
M is maximal ideal of R.
$a, b \in M,(a-b)^{n} \in M$.
$(r a)^{n}=0=(a r)^{n}, r \in R$.
M is ideal.
$M \subseteq N \subseteq R$.
$M \neq N$.
$N=R$.
$\exists a \in u n i t \in R$.
M is maximal ideal.
Let P be a prime ideal of R.
$P \subseteq M$.
Show $M \subseteq P$.
$a \in M$.
$a^{n}=0$.
$a a^{n-1}=0$.
(i) $a \in P$, done.
(ii) $a^{n-1} \in P$.

॥
$a \cdot a^{n-2}$
\vdots
$a \in P$
$\Rightarrow M \subseteq P$.
(c) Let P be the unique prime ideal.
$P \mapsto P_{P}$ is (unique) maximal ideal in R_{P}.
$\therefore R_{P} / P_{P}$ is a field.
Suppose $a \in R$ is a zero divisor.
$\therefore \frac{a}{1}$ is a zero divisor in R_{P}.
$\Rightarrow \frac{a}{1} \in P_{P}=\left\{\left.\frac{r}{t} \right\rvert\, r \in P, t\right.$ not in $\left.P\right\}$.
$\Rightarrow(a t-r) s=0$ for some $r \in P, t$ not in $P_{1}, S \in R-P$.
\Rightarrow ats $=r s \in P$.
$\Rightarrow a \in P$.
Since P is prime.
$(i) \Rightarrow(i i) P$ is maximal prime ideal if
(1) P is a prime ideal.
(2)If P^{\prime} is a prime ideal and $P^{\prime} \subseteq P$, then $P=P^{\prime}$.
$($ iii $) \Rightarrow(i i)$ Let P be min prime ideal in R.
Let \mathbb{Z} be the set of zero divisor.
Let N be the set of nonunits.
By (iii), $\mathbb{Z} \subseteq P$ and $N \subseteq \mathbb{Z}$.
Hence $N=\mathbb{Z}$.
Since \mathbb{Z} is prime, $\mathbb{Z}=P=N$.
Hence R is local.
$C=\{I \mid I$ an ideal in R, with $I \cap S=\varnothing\}$.
Take a "maximal" element Q in C.
Then Q is a prime ideal and $Q \neq R$.
Hence $P=Q \rightarrow \leftarrow$ since $Q \cap S=\varnothing$. $P \cap S=\varnothing$.
Then $0 \in S$.
(d) $P:$ min prime ideal $\subseteq R$.
\mathbb{Z} : all zero divisor for R.
$\mathbb{Z} \subseteq R$.
N : all nonunit,$N \nsubseteq \mathbb{Z}$.
prove $x \in N, x^{n}=0$ for some n .
$P \supseteqq N \Rightarrow P$ is a maxi ideal.
$\because P$ is min prime ideal.
$\therefore P$ is unique prime ideal.
$x \in N$.
$x^{n} \neq 0 \forall n$.
$S=\left\{x^{n} \mid n=1,2, \ldots\right\}$.
C is a collection.
$C=\{I \triangleleft R: I \cup S=\varnothing\}$.
(C, \subseteq) partial order set.
Take a maximal chain in C and let Q be the union of the chain.
Note $Q \in C$.
$a, b \in R, a b \in Q$.
Suppose a not in Q, b not in Q.
$a \in Q+(a), b \in Q+(b)$.
But Q is max in $\mathrm{C} \Rightarrow Q+(a) \cap S$.
$\Rightarrow \exists x^{i} \in Q+(a) \cap S, x^{i} \in Q+(b) \cap S$.
$\Rightarrow x^{i+h} \in(Q+(a))(Q+(b)) \subseteq Q+(a b)=Q \rightarrow \leftarrow$
$\Rightarrow \mathrm{Q}$ is a prime ideal.
But $Q=P \rightarrow \leftarrow$
$\Rightarrow x^{n}=0$ for some n .

