- (a) $R = \mathbb{Z}_4 = \{0, 1, 2, 3\}$ unit:1,3 nonunit:0,2 nilpotent:0,2 zero division:2 - (i) $P \subseteq R$ $\{0\},\{0,2\}$ - (ii) ✓ - (iii) ✓ - (b) M: nonunit is nilpotent. M is maximal ideal of R. $a, b \in M, (a b)^n \in M$. $(ra)^n = 0 = (ar)^n, r \in R$. M is ideal. $M \subseteq N \subseteq R$. $M \neq N$. N = R. $\exists a \in unit \in R$. M is maximal ideal. Let P be a prime ideal of R. $P \subseteq M$. Show $M \subseteq P$. $a \in M$. $a^n = 0$. - (i) $a \in P$,done. $aa^{n-1} = 0.$ - (ii) $a^{n-1} \in P$. $a \cdot a^{n-2}$ \vdots $a \in P$ $\Rightarrow M \subseteq P$. - (c) Let P be the unique prime ideal. $P \mapsto P_P$ is (unique) maximal ideal in R_P . $\therefore^{R_P} \nearrow_{P_P}$ is a field. Suppose $a \in R$ is a zero divisor. $\therefore \frac{a}{1}$ is a zero divisor in R_P . $\Rightarrow \frac{a}{1} \in P_P = \{\frac{r}{t} | r \in P, t \text{ not } inP\}$. $\Rightarrow (at - r)s = 0 \text{ for some } r \in P, t \text{ not } inP_1, S \in R - P$. $\Rightarrow ats = rs \in P$. $\Rightarrow a \in P$. Since P is prime. - $(i) \Rightarrow (ii) P$ is maximal prime ideal if - (1)P is a prime ideal. - (2) If P' is a prime ideal and $P' \subseteq P$, then P = P'. - $(iii) \Rightarrow (ii)$ Let P be min prime ideal in R. Let \mathbb{Z} be the set of zero divisor. Let N be the set of nonunits. By (iii), $\mathbb{Z} \subseteq P$ and $N \subseteq \mathbb{Z}$. Hence $N = \mathbb{Z}$. Since \mathbb{Z} is prime, $\mathbb{Z} = P = N$. Hence R is local. $C = \{I | I \text{ an ideal in } R, \text{ with } I \cap S = \emptyset\}.$ Take a "maximal" element Q in C. Then Q is a prime ideal and $Q \neq R$. Hence $P = Q \rightarrow \leftarrow \text{since } Q \cap S = \emptyset$. $$P \cap S = \emptyset$$. Then $0 \in S$. - (d) P: min prime ideal $\subseteq R$. - \mathbb{Z} : all zero divisor for R. $\mathbb{Z} \subseteq R$. N: all nonunit $N \nsubseteq \mathbb{Z}$. prove $x \in N, x^n = 0$ for some n. $P \supseteq N \Rightarrow P$ is a maxi ideal. $\therefore P$ is min prime ideal. $\therefore P$ is unique prime ideal. $x \in N$. $x^n \neq 0 \forall n$. $$S = \{x^n | n = 1, 2, \dots\}.$$ C is a collection. $$C = \{ I \lhd R : I \cup S = \emptyset \}.$$ (C,\subseteq) partial order set. Take a maximal chain in C and let Q be the union of the chain. Note $Q \in C$. $a, b \in R, ab \in Q.$ Suppose a not inQ, b not inQ. $a \in Q + (a), b \in Q + (b).$ But Q is max in $C \Rightarrow Q + (a) \cap S$. $$\Rightarrow \exists x^i \in Q + (a) \cap S, x^i \in Q + (b) \cap S.$$ $$\Rightarrow x^{i+h} \in (Q+(a))(Q+(b)) \subseteq Q+(ab)=Q \rightarrow \leftarrow$$ \Rightarrow Q is a prime ideal. But $Q = P \rightarrow \leftarrow$ $\Rightarrow x^n = 0$ for some n.