進階代數（上）第五次作業

上課老師：翁志文

2008 年十月二十日

1．（林育生）Let F be a field．Show that $F[x]$ is a Euclidean domain，a principal ideal domain and a unique factorization domain．（Hint．Theorem 6．2）

2．（a）（陳建文）Show that the polynomial $x+1$ is a unit in $\mathbb{Z}[[x]]$ ，but not a unit in $\mathbb{Z}[x]$ ．
（b）（羅健峰）Show that $x^{2}+3 x+2$ is irreducible in $\mathbb{Z}[[x]]$ ，but not in $\mathbb{Z}[x]$ ．
3．Let F be a field．
（a）（何昕暘）Show that (x) is a maximal ideal in $F[x]$ ，but it is not the only maximal ideal．
（b）（賴德展）Show that $F[[x]]$ is a principal ideal domain whose only ideals are $0,(1)$ ， $\left(x^{i}\right)$ for $i \in \mathbb{N}$ ．

4．（a）（洪湧昇）Show that if $1-a b$ is a unit in a ring then so is $1-b a$ ．
（b）（呂融昇）Prove that if an element of a ring has more than one right inverse then it has infinitely many．（Hint．Try $b+1-b a$ ．）
（c）（林志峰）Let a, b be elements of a ring such that a, b and $a b-1$ are units．Show that $a-b^{-1}$ and $\left(a-b^{-1}\right)^{-1}-a^{-1}$ ．（Hint．Try $a b a-a$ ．）

5．Define the Möbius function $\mu(n)$ of positive integers by the following rules：（a）$\mu(1)=1$ ， （b）$\mu(n)=0$ if n has a square factor，（c）$\mu(n)=(-1)^{s}$ if $n=p_{1} p_{2} \cdots p_{s}$ ，where p_{i} are distinct primes．
（a）（羅元勳）Prove that $\mu\left(n_{1} n_{2}\right)=\mu\left(n_{1}\right) \mu\left(n_{2}\right)$ if $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$ ．
（b）（連敏笉）Prove that

$$
\sum_{d \mid n} \mu(d)= \begin{cases}1, & \text { if } n=1 \\ 0, & \text { if } n \neq 1\end{cases}
$$

（c）（施智懷）Let $g: \mathbb{N} \rightarrow R$ be a function and

$$
g(n)=\sum_{d \mid n} f(d)
$$

Show

$$
f(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d)
$$

（d）（邱鈺傑）Let F_{q} be a field with q elements．Show that the number of irreducible monic quadratic polynomials in $F[x]$ is $q(q-1) / 2$ ．
（e）（裴若宇）Let F_{q} be a field with q elements．Show that the number of irreducible monic cubic polynomials in $F[x]$ is $q\left(q^{2}-1\right) / 3$ ．

