進階代數（上）第六次作業

上課老師：翁志文

2008 年十月三十日

1．（蕭雯華）Let F be a field and $f, g \in F[x]$ with degree of g at least 1 ．Show that there exist unique polynomials $f_{0}, f_{1}, \ldots, f_{r} \in F[x]$ with $\operatorname{deg} f_{i}<\operatorname{deg} g$ for all i and

$$
f=f_{0}+f_{1} g+f_{2} g^{2}+\cdots+f_{r} g^{r}
$$

2．For $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x], f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+n a_{n} x^{n-1}$ is called the formal derivative of $f(x)$ ．
（a）（林逸軒）Suppose char $R=0$ and $f(x) \in R[x]$ has positive degree．Show $f^{\prime}(x) \neq 0$ ．
（b）（陳巧玲）Suppose char $R=p \neq 0$ and $f(x) \in R[x]$ ．Show that $f^{\prime}(x)=0$ if and only if $f(x)=b_{0}+b_{1} x^{p}+b_{2} x^{2 p}+\cdots+b_{n} x^{n p}$ for some $b_{i} \in R$ ．

3．（a）（李光祥）Let $c \in F$ ，where F is a field of characteristic $p \neq 0$ ．Show that $x^{p}-x-c$ is irreducible in $F[x]$ if and only if $x^{p}-x-c$ has no root in F ．
（b）（林詒琪）Show that $f(x)=x^{5}-x-1$ has no root in \mathbb{Q} ．
（c）（葉彬）Show that $f(x)=x^{5}-x-1$ is irreducible over \mathbb{Q} ．
（d）（葉彬提供）Show that $f(x)=x^{5}-x-15$ is reducible over \mathbb{Q} ．
4．（a）（林家銘）Let D be an integral domain and $c \in D$ ．Show that $f(x)$ is irreducible in $D[x]$ if and only if $f(x-c)$ is irreducible．
（b）（林育生）For each prime p show that the cyclotomic polynomial $f(x)=x^{p-1}+x^{p-2}+$ $\cdots+x+1$ is irreducible in $\mathbb{Z}[x]$ ．

5．（a）（陳建文）If $a_{0}, a_{1}, \ldots, a_{n}$ are distinct elements of an integral domain D and $d_{0}, d_{2}, \ldots, d_{n}$ are any elements of D ．Show that there is at most one polynomial $f(x)$ of degree at most n in $D[x]$ such that $f\left(a_{i}\right)=d_{i}$ for $0 \leq i \leq n$ ．
（b）（羅健峰）If $a_{0}, a_{1}, \ldots, a_{n}$ are distinct elements of a field F and $d_{0}, d_{2}, \ldots, d_{n}$ are any elements of F ．Show that

$$
f(x)=\sum_{i=0}^{n} \frac{\left(x-a_{0}\right) \cdots\left(x-a_{i-1}\right)\left(x-a_{i+1}\right) \cdots\left(x-a_{n}\right)}{\left(a_{i}-a_{0}\right) \cdots\left(a_{i}-a_{i-1}\right)\left(a_{i}-a_{i+1}\right) \cdots\left(a_{i}-a_{n}\right)} d_{i}
$$

is the unique polynomial in $F[x]$ of degree at most n such that $f\left(a_{i}\right)=d_{i}$ for all i ．

