Solution for homework 6
by 9622534
1.

Since F is a field, $\mathrm{F}[\mathrm{x}]$ is an UFD. Let $F=\sum_{i=0}^{n} a_{i} x^{i}, g=\sum_{i=0}^{m} b_{i} x^{i}$ with $n>m$. Then $F=Q_{1} g+f_{0}$ for some $Q_{1}$ with degree $n-m$. Let $r=\left\lfloor\frac{\operatorname{deg}(f)}{\operatorname{deg}(g)}\right\rfloor$, then $f=f_{r} g^{r}+e_{r-1}, e_{i}=f_{i} g^{i}+e_{i-1}$, where $\operatorname{deg}\left(f_{i}\right)<\operatorname{deg}(g)$ for $\operatorname{deg}\left(e_{i}\right)<$ $\operatorname{deg}\left(g^{i+1}\right)$. For uniqueness, suppose
$f=f_{0}+f_{1} g+\ldots+f_{r} g^{r}=h_{0}+h_{1} g+\ldots+h_{r} g^{r}$, then we have
$0=\left(f_{0}-h_{0}\right)+\left(f_{1}-h_{1}\right) g+\ldots+\left(f_{r}-h_{r}\right) g^{r}$
$-\left(f_{0}-h_{0}\right)=\left(f_{1}-h_{1}\right) g+\ldots+\left(f_{r}-h_{r}\right) g^{r} \Rightarrow f_{0}=h_{0}$
W.L.O.G. Let i be the smallest index such that $h_{i} \neq f_{i}$, then
$-\left(f_{i}-h_{i}\right)=\left(f_{i+1}-h_{i+1}\right) g^{i+1}+\ldots+\left(f_{r}-h_{r}\right) g^{r}$
$\Rightarrow \frac{-\left(f_{i}-h_{i}\right)}{g^{i}}=\left(f_{i+1}-h_{i+1}\right) g+\ldots+\left(f_{r}-h_{r}\right) g^{r-i} \Rightarrow f_{i}=h_{i}$
Thus we are done.
2.(a)

Since $f(x)$ has positive degree, $\exists i \geq 1, a_{i}>0$. Since char $\mathrm{R}=0$, then $i a_{i} \neq 0 \Rightarrow f^{\prime}\left(x_{i}\right) \neq 0$.
2.(b)
$(\Rightarrow)$ Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$, then $f^{\prime}(x)=\sum_{i=1}^{n} a_{i} x^{i-1}$. Since $f^{\prime}(x)=0, i a_{i}=$ $0 \forall 1 \leq i \leq n$. If $a_{i} \neq 0 \Rightarrow p \mid i$, thus $i=p j$ and we have $f(x)=\sum_{j=0}^{n} a_{p j} x^{p j}$.
$(\Leftarrow)$ Since $f^{\prime}(x)=b_{1} p x^{p-1}+\ldots+b_{n} p x^{p-1}$ and char $R=0$, we have $f^{\prime}(x)=0$.
3.(a)
$(\Rightarrow)$ Suppose not. Then $f(x)=x^{p}-x-c$ has a root $r$ in $F$, i.e. $f(r)=0$. By Corollary 6.3, there exists a unique $q(x) \in F$ such that $f(x)=q(x)(x-r)+$ $f(r)=q(x)(x-r)$. Since $q(x)$ and $(x-r)$ are not unit in $F, f(x)$ is irreducible in $F[x]$, a contradiction.
$(\Leftarrow)$ By theorem V 1.10, there exists an extention field $F^{\prime} \supseteq F$ and $a \in F^{\prime} \backslash F$ such that $a^{p}-p-c=0$. Note $\operatorname{char}(F)=\operatorname{char}\left(F^{\prime}\right)=p$.
Claim: $\forall i \in F, a+i$ is a root of $x^{p}-x-c$.
proof of the claim : $(a+i)^{p}-(a+i)-c=\left(a^{p}+i^{p}-(a+i)-c\right)=\left(a^{p}-a-\right.$ c) $+\left(i^{p}-i\right)=0+(i-i)=0$

Since $0,1,2, \ldots, p-1 \in F, a, a+1, a+2, \ldots, a+(p-1)$ are p distinct roots of $x^{p}-x-c$.
Hence $f(x)=\prod(x-(a+i))$ over $F^{\prime}$ where $i \in\{0, \ldots, p-1\}$.
Now suppose not, i.e. $f(x)$ is reducible in $F[x]$. Then $f(x)=q(x) g(x)$ over $F, q(x)=\prod_{i \in I \subset\{0, \ldots, p-1\},|I|=s}(x-(a+i))$ with $\operatorname{deg}(q(x))=s<p$.
Consider the coefficient of $x^{s-1}$ which is $-s a+k \in F$. Since $k \in F$ we have $-s a \in F \Rightarrow-a \in F$, a contradiction.
3.(b)

Since the only integers that divide -1 are 1 and -1 , and $f(-1)=-1$, $f(1)=1$, we have that $\mathrm{f}(\mathrm{x})$ has no root in $\mathcal{Q}$.
3.(c)

Use same argument we know $f(x)$ has no divisor of degree 1. Thus if $f(x)$ is reducible, it must have form
$f(x)=\left(x^{3}+a x^{2}+b x+c\right)\left(x^{2}+d x+e\right)$. Since it contains 1 as a coefficient, $\mathrm{f}(\mathrm{x})$ is primitive, thus it is reducible over $\mathcal{Q}$ if and only if it is reducible over $\mathcal{N}$. Thus we only need to solve $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, e in $\mathcal{N}$. It's trivial to get that there is no solution, thus $\mathrm{f}(\mathrm{x})$ is irreducible.

## 3.(d)

$x^{5}-x+15=\left(x^{3}+x^{2}-2 x-5\right)\left(x^{2}-x+3\right)$. And it's easy to find out that it has no root in $\mathcal{Q}$.
4.(a) $(\Rightarrow)$ Suppose $f(x-c)$ is not irreducible in $D[x], c \in D$
$\Rightarrow f(x-c)=\left(\sum_{i=0}^{m} a_{i} x^{i}\right)\left(\sum_{i=0}^{k} b_{i} x^{i}\right)$ where $a_{i}, b_{i} \in D$ and $\left(\sum_{i=0}^{m} a_{i} x^{i}\right),\left(\sum_{i=0}^{k} b_{i} x^{i}\right)$ are not unit in $D[x]$.
Thus $f(x)=f((x+c)-c)=\left(\sum_{i=0}^{m} a_{i}(x+c)^{i}\right)\left(\sum_{i=0}^{k} b_{i}(x+c)^{i}\right)$ $=\left(a_{m} x^{m}+\ldots\right)\left(b_{k} x^{k}+\ldots\right) \Rightarrow a_{m} b_{k} \neq 0$
Thus $\left(a_{m} x^{m}+\ldots\right),\left(b_{k} x^{k}+\ldots\right)$ are not unit in $D[x]$.
$(\Leftarrow)$ Since $f(x)=f(x+c)-c$, it's clear to see.
4.(b) $f(x)=\frac{(x-1)^{p-1}}{x-1}=x^{p}+\binom{p}{p-1} x^{p-1}+\ldots+\binom{p}{1}$,

Thus $p \left\lvert\,\binom{ p}{r} \forall 1 \leq r \leq p-1\right.$ and $p \bigvee 1, p^{2} \vee p$, by Eisenstein's criterion we are done.
5.(a) Suppose there are more than one polynomial $f(x), g(x)$ of degree at most n in $D[x]$ such that $f\left(a_{i}\right)=d_{i}, g\left(a_{i}\right)=d_{i}$, for $0 \leq i \leq n$.
Then $(f-g)\left(a_{i}\right)=0 \forall i$ and $\operatorname{deg}((f-g)(x)) \leq n$.
Let F be the quotient field of D , then $(f-g)(x) \in F[x]$,
Since $x-a_{0}$ is irreducible in $F[x]$,
Then $(f-g)\left(a_{0}\right)=0 \Leftrightarrow\left(x-a_{0}\right) \mid(f-g)(x)$, similarly for $x-a_{1}, \ldots, x-a_{n}$,
Since $F[x]$ is an UFD, we have
$(f-g)(x)=c\left(x-a_{0}\right) \cdots\left(x-a_{n}\right)$ has degree $>n$, a contradiction.
Thus $f=g$.
$5(\mathrm{~b})$ Suppose $\exists h$ such that $h\left(a_{i}\right)=c_{i} \forall i$, with $\operatorname{deg}(h)<n$. The rest is clear to see.

