進階代數（上）第七次作業

上課老師：翁志文

2008 年十一月十三日

1．（何昕暘）Let A be an $n \times n$ matrix over \mathbb{R} ．For $f(\lambda) \in \mathbb{R}[\lambda]$ and $u \in \mathbb{R}^{n}$ ，define $f(\lambda) u=$ $f(A) u$ and hence R^{n} is a $\mathbb{R}[\lambda]$－module．A subspace W of \mathbb{R}^{n} is A－invariant if $A W \subseteq W$ ． Show that a subspace W of R^{n} is a $R[\lambda]$－submodule if and only if W is A－invariant．

2．（賴德展）Show that the \mathbb{Z}－module $\frac{\mathbb{Z} \times \mathbb{Z}}{((2,2),(4,-2))}$ is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{6}$ ．（Hint． $((1,1))+((1,0))=\mathbb{Z} \times \mathbb{Z})$

3．（洪湧昇）Let $M_{1}, M_{2}, \ldots, M_{n}$ be R－submodule of M such that $M=M_{1}+M_{2}+\cdots+M_{n}$ and

$$
M_{i} \cap\left(M_{1}+\cdots+M_{i-1}+M_{i+1}+\cdots+M_{n}\right)=0
$$

for each $1 \leq i \leq n$ ．Show that M is isomorphic to $M_{1} \oplus \cdots \oplus M_{n}$ ．
4．（林志峰）Let N_{1}, N_{2} be submodules of M_{1}, M_{2} respectively．Show that $N_{1} \oplus N_{2}$ is a submodule of $M_{1} \oplus M_{2}$ ，and

$$
\frac{M_{1} \oplus M_{2}}{N_{1} \oplus N_{2}} \cong \frac{M_{1}}{N_{1}} \oplus \frac{M_{2}}{N_{2}} .
$$

5．（呂融昇）Let $f: M \rightarrow N$ and $g: N \rightarrow M$ be R－module homomorphisms such that $f g$ is the identity map on N ．Show that M is isomorphic to Ker $f \oplus \operatorname{Img} g$ ．

6．（羅元勳）Obtain a Smith normal form for the integral matrix

$$
A=\left(\begin{array}{cccc}
6 & 2 & 3 & 0 \\
2 & 3 & -4 & 1 \\
-3 & 3 & 1 & 2 \\
-1 & 2 & -3 & 5
\end{array}\right)
$$

and the corresponding invertible matrices P, Q such that $P A Q$ is in Smith normal form．
7．（連敏筠）Obtain a a Smith normal form for the rational polynomial matrix

$$
A=\left(\begin{array}{cccc}
\lambda-17 & 8 & 12 & -14 \\
-46 & \lambda+22 & 35 & -41 \\
2 & -1 & \lambda-4 & 4 \\
-4 & 2 & 2 & \lambda-3
\end{array}\right)
$$

and the corresponding invertible matrices P, Q such that $P A Q$ is in Smith normal form．

