1. Proof:

 (\Rightarrow)

 $\forall u \in W$

Since W is a subspace of \mathbb{R}^n , $\forall f \in \mathbb{R}[\lambda]$, $Au = \lambda u \in w$

 (\Leftarrow)

Since $AW \subseteq W$, $\forall f \in \mathbb{R}[\lambda]$, $f(\lambda)u = f(A)u \in W$.

2. Proof:

Define : ϕ : $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}_2 \times \mathbb{Z}_6$ by $\phi(1,1) = \overline{(1,0)}$, $\phi(1,0) = \overline{(0,1)}$

Since (1, 1), (1, 0) and $\overline{(1, 0)}, \overline{(0, 1)}$ are those largest generate set of $\mathbb{Z} \times \mathbb{Z}$ and $\mathbb{Z}_2 \times \mathbb{Z}_6$, respectly, this homomorphism is decided.

And note that the kernel of ϕ is ((2, 2), (6, 0)) = ((2, 2), (4, -2))

Thus , by the First Isomorphic Theorem , the result follows.

3. Proof:

Since $M = M_1 + \dots + M_n$, $\forall m \in M$, $\exists m_i \in M_i$, s.t. $m = m_1 + \dots + m_n$ **Define** : $\phi : M \to M_1 \oplus \dots \oplus M_n$, by $\phi(m) = (m_1, \dots, m_n)$

(a) Well – define

Suppose $\phi(m) = (m_1, \cdots, m_n) = (k_1, \cdots, k_n)$ By definition, $m = m_1 + \cdots + m_n = k_1 + \cdots + k_n$ $\Rightarrow m_1 - k_1 = (k_2 + \cdots + k_n) - (m_2 + \cdots + m_n)$ $= (k_2 - m_2) + \cdots + (k_n - m_n)$

This implies $M_2 + \cdots + M_n = 0$ and we have well-define.

(b) **OnetoOne**

Let $\phi(m) = (m_1, \cdots, m_n) = \phi(k)$ then $m = m_1 + \cdots + m_n = k$

(c) **Onto**

 $M = M_1 + \cdots + M_n$, $\forall m_i \in M_i \exists m \in M \text{ s.t. } m_1 + \cdots + m_n = m$ And ϕ is an isomorphism from M to $M_1 \oplus \cdots \oplus M_n$.

4. Proof:

First I should prove that $N_1 \oplus N_2$ is a submodule of $M_1 \oplus M_2$, and this just follows from the fact that $N_1 \oplus N_2$ is a subgroup of $M_1 \oplus M_2$.

And then, Let $\phi: M_1 \oplus M_2 \to M_1/N_1 \oplus M_2/N_1$ by $\phi(m_1, m_2) = (\overline{m_1}, \overline{m_2})$ is a homomorphism If we let $(x_1, x_2) \in Ker(\phi)$, $\phi(x_1, x_2) = (\overline{e_1}, \overline{e_2})$ where $x_i \in M_i$ and e_i is identity of M_i , $(x_i - e_i) \in N_i$

This implies $x_i \in N_i$ for *i* is 1,2. And it is clearly that $\operatorname{Ker} \phi \supseteq N_1 \oplus N_2$

Therefore , ${\rm Ker}\phi$ is $N_1\oplus N_2$, and by First Isomorphic Theorem , the result follows.

5. Proof:

First I claim that g is one-to-one and f is onto

 $\forall x, y \in N \text{ such that } g(x) = g(y)$

 $\Rightarrow f \circ g(x) = f \circ g(y) \Rightarrow x = y$

This implies g is one-to-one.

And $\forall x \in N, \exists y \in M, where y = g(x) \Rightarrow f(y) = f \circ g(x) = x$ implies f is onto Then $\forall a \in \operatorname{Ker} f \cap \operatorname{Im} g$, $\exists b \ inN$ s.t. a = g(b) and f(a) = 0

 $\Rightarrow f(a) = f \circ g(b) = 0 = b$

 $\Rightarrow g(0) = a = 0$ implies Ker $f \cap \text{Im}g = 0$

Moreover , $\forall m \in M$ Let $n = g \circ f(n)$

Note that $n \in \operatorname{Im} g$,

and
$$f(m - n) = f(m) - f(n)$$

= $f(m) - f \circ g \circ f \circ (m)$
= $f(m) - (f \circ g) \circ f(m) = f(m) - f(m) = 0$
thus , $m - n \in \operatorname{Ker} f \Rightarrow m \in \operatorname{Ker} f + \operatorname{Im} g$

Final the result follows.

6. P is $\begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
-12 & -2 & 1 & 0 \\
-3798 & -633 & 319 & -1
\end{bmatrix}$ Q is $\begin{bmatrix}
0 & 0 & 14 & -27 \\
0 & -1 & -39 & 95 \\
0 & 1 & -2 & 4 \\
1 & 7 & 81 & -161
\end{bmatrix}$ PAQ is $\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 610
\end{bmatrix}$ 7. PAQ is $\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 610
\end{bmatrix}$ 7. PAQ is

Page 2