進階代數（上）第八次作業

上課老師：翁志文

2008 年十一月二十日

1．（a）（施智懷）Let F be a field and $f(x) \in F[x]$ with positive degree．Show that there exists a field E with $F \subseteq E$ and an element $a \in E$ such that $f(a)=0$ ．
（b）（邱鈺傑）Let F be a field．Show that there exists a field E with $F \subseteq E$ such that for any $f(x) \in F[x]$ of positive degree there exists an element $a \in E$ such that $f(a)=0$ ．
（c）（斐若宇）F be a field．Show that there exists a field E with $F \subseteq E$ such that for any $f(x) \in E[x]$ of positive degree there exists an element $a \in E$ such that $f(a)=0$ ．

2．（蕭雯華）Let A be an $n \times n$ invertible matrix over a PID D ．Show that A is a product of elementary matrices of types $I, I I, I I I$ and extra type．

3．（林逸軒）Determine the structure of \mathbb{Z}－module \mathbb{Z}^{3} / K where K is generated by $f_{1}=$ $(2,1,-3), f_{2}=(1,-1,2)$ ．

4．（陳巧玲）Let $D=\mathbb{Z}[\sqrt{-1}]$ ．Determine the structure of D^{3} / K where K is generated by $f_{1}=(1,3,6), f_{2}=(2+3 i,-3 i, 12-18 i), f_{3}=(2-3 i, 6+9 i,-18 i), i=\sqrt{-1}$ ．What is the cardinality of D^{3} / K ？

5．（李光祥）Show that any finite generated module M over a PID is a direct sum of its torsion submodule M_{t} and a free submodule．（Hint．Use structure theorem）

6．Let M be a finitely generated torsion module over a PID D．
（a）（葉彬）Show that there exists a unique finite set of primes $p_{1}, p_{2}, \ldots, p_{h}$ in D such that

$$
M=M_{p_{1}} \oplus M_{p_{2}} \oplus \cdots \oplus M_{p_{h}}
$$

where $M_{p_{i}}=\left\{m \in M \mid p_{i}^{k} m=0\right.$ for some $\left.k \in \mathbb{N}\right\}$ ．（Hint．p_{i} appears in the generators of order ideals of generators of M ．）
（b）（林家銘）Show that for each $1 \leq i \leq h, M_{p_{i}}=D z_{i 1} \oplus D z_{i 2} \oplus \cdots \oplus D z_{i r_{i}}$ with

$$
O_{z_{i 1}} \supseteq O_{z_{i 2}} \supseteq \cdots \supseteq O_{z_{i r_{i}}} \neq 0
$$

for some $r_{i} \in \mathbb{N}$ and some $z_{i j} \in M_{p_{i}}$ ．
（c）（林育生）Let G be a finite abelian group with operation + ．Show that G is a finitely generated torsion \mathbb{Z}－module under the natural definition of $n g$ for $n \in \mathbb{Z}$ and $g \in G$ ．
（d）（陳建文）Determine all the finite abelian groups of order 72 up to isomorphism．

