- 1. (a) Let $f(x) = P_1(x) \cdots P_r(x)$, $P_i(x)$ is irreducible Since $< P_1(x) >$ is a maximal ideal in F[x]Then $\frac{F[x]}{< P_1(x)>}$ is a field
 Let $\phi: F \to \frac{F[x]}{< P_1(x)>}$ $F' = \{a+ < P_1(x) > | a \in F\}$ Consider in $\frac{F[x]}{< P_1(x)>}$ Let $P_1(x) = a_0 + a_1x + \cdots + a_tx^t$ $\alpha = x+ < P_1(x) > \Rightarrow P_1(\alpha) = 0$
 - (b) Let $f_1(x), f_2(x) \cdots$ be all polynomials in F[x]. Choose $F \subseteq E_1$ such that $f_1(x)$ has a zero in E_1 , then $f_2(x) \subseteq E_1$. Choose $E_1 \subseteq E_2$ such that $f_2(x)$ has a zero in E_2 , then $f_3(x) \subseteq E_2$.

:

Set $E = \bigcup E_i$.

<u>Claim:</u> (1) E is a field. (2)E satisfies desired property.

(c) Apply (b). $\exists E_1 \supseteq F$ such that $\forall f(x) \in F[x], \exists a \in E_1$ such that f(a) = 0 (E_1 is a field). $\exists E_2 \supseteq E_1$ such that $\forall f(x) \in E_1[x], \exists a \in E_2$ such that f(a) = 0 (E_2 is a field).

:

Then $F \subset E_1 \subset E_2 \subset \cdots \subset E_n \subset \cdots$.

Let $E_0 = F$ and $E = \bigcup_i E_i$

Claim:

- (1). E is a field.
- (2). $\forall f(x) \in E[x], \exists a \in E \text{ such that } f(a) = 0$

pf(2):Let $f(x) \in E[x]$ of degree n

$$\Rightarrow f(x) = a_0 + a_1 x + \dots + a_n x^n, a_i \in E$$

For each i, assume $a_i \in E_{k_i}$

Find the largest k_i , say "j"

 $\Rightarrow a_i \in E_j \text{ for each } i.$

2. Thought:

$$P_n \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_m = D \text{ where } D = \begin{bmatrix} d_1 & & & 0 \\ & d_2 & & \\ & & \ddots & \\ 0 & & & d_n \end{bmatrix}$$

$$A = P_1^{-1} \cdots P_{n-1}^{-1} P_n^{-1} D Q_m^{-1} \cdots Q_1^{-1}$$

WANT: type 1, 2, 3 and extra type are invertible.

Check extra type:

Let a, b and gcd(a, b) = d, then ax + by = d.

Consider x, y and gcd(x, y) = 1, then sx + ty = 1.

$$E_1 = \begin{bmatrix} x & -t \\ y & s \end{bmatrix}$$
 $E_2 = \begin{bmatrix} s & t \\ -y & x \end{bmatrix} \Longrightarrow E_1 E_2 = I$

Denote $P^{-1} = P_1^{-1} \cdots P_n^{-1}$ and $Q^{-1} = Q_m^{-1} \cdots Q_1^{-1}$.

Since A is invertible, det(A) = 1 and det(D) = 1.

$$1 = det(D) = \prod_{i=1}^{n} d_i \Longrightarrow d_i \neq 0 \text{ and } d_i \text{ are unit } \forall i$$
$$\Longrightarrow D = I_n \text{ (up to unit)}$$

Hence A is a product of elementary matrices of type 1, 2, 3 and extra type.

$$[C_{ij}] \begin{bmatrix} d_1 & 0 \\ & \ddots \\ 0 & d_n \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ & \ddots \\ 0 & 1 \end{bmatrix}$$

3. $f_1 = (2, 1, 3), f_2 = (1, -1, 2)$

$$A = \begin{bmatrix} 2 & 1 & -3 \\ 1 & -1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix}$$

$$\frac{\mathbb{Z}^3}{K} \cong \frac{\mathbb{Z} \times (1,0,0)}{((1,0,0))} \oplus \frac{\mathbb{Z} \times (0,1,0)}{((0,3,0))} \oplus \frac{\mathbb{Z} \times (0,0,1)}{((0,0,0))}$$
$$\cong \mathbb{Z}^3 \oplus \mathbb{Z}$$

4. Use structure theorem

$$\frac{D^3}{K} \cong \frac{\mathbb{Z}[i]}{(1)} \oplus \frac{\mathbb{Z}[i]}{(6)} \oplus \frac{\mathbb{Z}[i]}{(96 - 24i)}$$

$$\begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 6 \\ 2+3i & -3i & 12-18i \\ 2-3i & 6+9i & -18i \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}$$

:

5. Since M_t is a torsion D-submodule of M, M/M_t is torsion-free and finite generated. Claim: M/M_t is free.

Let $F = M/M_t$ and $u_1, u_2, \dots, u_k, v_1, v_2, \dots, v_{n-k}$ be generators of F, where $S = \{u_1, u_2, \dots, u_k\}$ is a maximal linearly independent subset of these generators. Then

Page 2

 $\{v_i, u_1, \cdots, u_k\}$ is linearly dependent for each v_i , that is, there exist $a_i, r_1, \cdots, r_k \in D$ such that

$$a_i v_i + r_1 u_1 + \dots + r_k u_k = 0$$

Let $a = a_1 a_2 \cdots a_{n-k}$, then $av_i \in Span(S), \forall 1 \le i \le n-k$

Hence $aF := \{av | v \in F\}$ is a D-submodule of Span(S). Since Span(S) is a free Dsubmodule with basis S, aF is also free.

Define a surjective homomorphism

$$\tau: F \to aF$$
 by $\tau(v) = av$ for all $v \in F$

Since F is torsion-free, τ is also 1-1. Hence τ is an isomorphism and thus $F \cong aF$. Therefore, F is free. Consider a surjective homomorphism

$$\pi: M \to M/M_t$$
 from M onto the free module M/M_t

Let \mathbb{B} be a basis of M/M_t . Note $ker(\pi) = M_t$. For each $b \in \mathbb{B}$, choose one $b' \in M$ with the property that $\pi(b') = b$. Let $\mathbb{B}' = \{b' \in M | \pi(b') = b, b \in \mathbb{B}\} \subseteq M$. Note \mathbb{B}' is linearly independent. Hence $Span(\mathbb{B}')$ is a free D-submodule of M with basis \mathbb{B}' . Claim: $M_t \cap Span(\mathbb{B}') = \{0\}.$

(a) By Theorem 1.15

$$\{A_i|i\in I\} = \left\{ \begin{array}{l} 1.A = \Sigma\{A_i\} \\ 2.A_t \cap A_{t^*} = 0, \forall t\in I \text{ where } A_{t^*} = \Sigma_{i\in I, i\neq t} A_i \end{array} \right. \Longrightarrow A \cong \Sigma A_i$$

1. M_{p_i} is a M-submodule, $\forall p_i$

A.
$$a, b \in M_{p_i} \Rightarrow p^r a = 0$$
 and $p^s b = 0$, where $r, s \in \mathbb{N}$
Let $t = max\{r, s\} \Rightarrow p^t(a + b) = 0 \Rightarrow a + b = M_p$

B.
$$r \in \mathbf{R}, a \in M_p \Rightarrow p^s a = 0$$

$$\therefore p^s r a = r(p^s a) = r 0 = 0$$

2. Let
$$0 \neq a \in M$$
, $O_a = r$ PID \Rightarrow UFD \therefore Let $r = p_1^{n_1} \cdots p_k^{n_k}$ Let $r_i = p_1^{n_1} \cdots p_{i-1}^{n_{i-1}} p_{i+1}^{n_{i+1}} \cdots p_k^{n_k}$

$$\therefore \text{ Let } r = p_1^{n_1} \cdots p_k^{n_k}$$

Let
$$r_i = p_1^{n_1} \cdots p_{i-1}^{n_{i-1}} p_{i+1}^{n_{i+1}} \cdots p_k^{n_i}$$

 $i \neq j$ r_i, r_j are relatively prime $\stackrel{\text{Thm 3.11}}{\Longrightarrow} 1_R = \Sigma s_i r_i$

$$a = a \cdot 1_R = \Sigma s_i r_i a$$

$$p_i^{n_i}(s_i r_i a) = s_i r a = 0$$

$$\therefore s_i r_i a \in M_{p_i}$$

(b) Clearly.

(c)
$$|G| < \infty$$
, $\forall g \in G \quad |G| \cdot g = \underbrace{g + g + \dots + g}_{|G|} = 0$

Let $m, n \in \mathbb{Z}$ and $x, y \in G$

$$n > 0, nx = \overbrace{x + x + \dots + x}$$

$$n = 0, nx = 0$$

$$n < 0, nx = \underbrace{(-x) + (-x) + \dots + (-x)}_{-n}$$

Page 3

i. A.
$$n > 0$$

$$n(x+y) = \underbrace{(x+y) + \dots + (x+y)}_{n}$$

$$= \underbrace{x + x + \dots + x}_{n} + \underbrace{y + y + \dots + y}_{n}$$

$$= nx + ny$$

B. n = 0

$$n(x + y) = 0 = 0 + 0 = nx + ny$$

C. n < 0

$$n(x+y) = \underbrace{((-x) + (-y)) + \dots + ((-x) + (-y))}_{-n}$$

$$= \underbrace{(-x) + (-x) + \dots + (-x)}_{-n} + \underbrace{(-y) + (-y) + \dots + (-y)}_{-n}$$

$$= nx + ny$$

- ii. (n+m)x = nx + mx
- iii. (mn)x = m(nx)

(d) Method 1: factor decomposition

$$72 \longleftrightarrow \mathbb{Z}_{72}$$

$$2, 36 \longleftrightarrow \mathbb{Z}_2 \oplus \mathbb{Z}_{36}$$

$$3, 24 \longleftrightarrow \mathbb{Z}_2 \oplus \mathbb{Z}_{24}$$

$$6, 12 \longleftrightarrow \mathbb{Z}_6 \oplus \mathbb{Z}_{12}$$

$$2, 2, 18 \longleftrightarrow \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_{18}$$

$$2, 6, 6 \longleftrightarrow \mathbb{Z}_2 \oplus \mathbb{Z}_6 \oplus \mathbb{Z}_6$$

By factor decomposition, there are six finite groups of order 72 up to isomorphism.

Method 2: primary decomposition

$$72 = 2^3 \times 3^2$$

$$M = M_2 \oplus M_3$$

$$|M_2| = 8 \to \mathbb{Z}_8, \mathbb{Z}_2 \oplus \mathbb{Z}_4, \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$$

$$|M_3| = 9 \to \mathbb{Z}_9, \mathbb{Z}_3 \oplus \mathbb{Z}_3$$

By primary decomposition, there are $3 \times 2 = 6$ finite groups of order 72 up to isomorphism.