1. (a) Let $f(x)=P_{1}(x) \cdots P_{r}(x), P_{i}(x)$ is irreducible

Since $<P_{1}(x)>$ is a maximal ideal in $F[x]$
Then $\frac{F[x]}{\left\langle P_{1}(x)\right\rangle}$ is a field
Let $\phi: F \rightarrow \frac{F[x]}{\left\langle P_{1}(x)\right\rangle}$
$F^{\prime}=\left\{a+<P_{1}(x)>\mid a \in F\right\}$
Consider in $\frac{F[x]}{\left\langle P_{1}(x)\right\rangle}$
Let $P_{1}(x)=a_{0}+a_{1} x+\cdots+a_{t} x^{t}$
$\alpha=x+<P_{1}(x)>\Rightarrow P_{1}(\alpha)=0$
(b) Let $f_{1}(x), f_{2}(x) \cdots$ be all polynomials in $F[x]$.

Choose $F \subseteq E_{1}$ such that $f_{1}(x)$ has a zero in $E_{1}$, then $f_{2}(x) \subseteq E_{1}$.
Choose $E_{1} \subseteq E_{2}$ such that $f_{2}(x)$ has a zero in $E_{2}$, then $f_{3}(x) \subseteq E_{2}$.

Set $E=\bigcup E_{i}$.
Claim: (1) E is a field. (2)E satisfies desired property.
(c) Apply (b).
$\exists E_{1} \supseteq F$ such that $\forall f(x) \in F[x], \exists a \in E_{1}$ such that $f(a)=0$ ( $E_{1}$ is a field ).
$\exists E_{2} \supseteq E_{1}$ such that $\forall f(x) \in E_{1}[x], \exists a \in E_{2}$ such that $f(a)=0\left(E_{2}\right.$ is a field $)$.

Then $F \subset E_{1} \subset E_{2} \subset \cdots \subset E_{n} \subset \cdots$.
Let $E_{0}=F$ and $E=\cup_{i} E_{i}$
Claim:
(1). E is a field.
(2). $\forall f(x) \in E[x], \exists a \in E$ such that $f(a)=0$
$\operatorname{pf}(2)$ :Let $f(x) \in E[x]$ of degree $n$
$\Rightarrow f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, a_{i} \in E$
For each $i$, assume $a_{i} \in E_{k_{i}}$
Find the largest $k_{i}$, say " $j$ "
$\Rightarrow a_{i} \in E_{j}$ for each $i$.
2. Thought:

$$
\begin{gathered}
P_{n} \cdots P_{2} P_{1} A Q_{1} Q_{2} \cdots Q_{m}=D \text { where } D=\left[\begin{array}{cccc}
d_{1} & & & 0 \\
& d_{2} & & \\
& & \ddots & \\
0 & & & d_{n}
\end{array}\right] \\
A=P_{1}^{-1} \cdots P_{n-1}^{-1} P_{n}^{-1} D Q_{m}^{-1} \cdots Q_{1}^{-1}
\end{gathered}
$$

WANT: type 1, 2, 3 and extra type are invertible.
Check extra type:
Let $a, b$ and $g c d(a, b)=d$, then $a x+b y=d$.
Consider $x, y$ and $\operatorname{gcd}(x, y)=1$, then $s x+t y=1$.

$$
E_{1}=\left[\begin{array}{cc}
x & -t \\
y & s
\end{array}\right] \quad E_{2}=\left[\begin{array}{cc}
s & t \\
-y & x
\end{array}\right] \Longrightarrow E_{1} E_{2}=I
$$

Denote $P^{-1}=P_{1}^{-1} \cdots P_{n}^{-1}$ and $Q^{-1}=Q_{m}^{-1} \cdots Q_{1}^{-1}$.
Since $A$ is invertible, $\operatorname{det}(A)=1$ and $\operatorname{det}(D)=1$.

$$
\begin{aligned}
1=\operatorname{det}(D)=\prod_{i=1}^{n} d_{i} & \Longrightarrow d_{i} \neq 0 \text { and } d_{i} \text { are unit } \forall i \\
& \Longrightarrow D=I_{n}(\text { up to unit })
\end{aligned}
$$

Hence $A$ is a product of elementary matrices of type $1,2,3$ and extra type.

$$
\left[C_{i j}\right]\left[\begin{array}{ccc}
d_{1} & & 0 \\
& \ddots & \\
0 & & d_{n}
\end{array}\right]=\left[\begin{array}{lll}
1 & & 0 \\
& \ddots & \\
0 & & 1
\end{array}\right]
$$

3. $f_{1}=(2,1,3), f_{2}=(1,-1,2)$

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
2 & 1 & -3 \\
1 & -1 & 2
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0
\end{array}\right] \\
\frac{\mathbb{Z}^{3}}{K} \cong \frac{\mathbb{Z} \times(1,0,0)}{((1,0,0))} \oplus \frac{\mathbb{Z} \times(0,1,0)}{((0,3,0))} \oplus \frac{\mathbb{Z} \times(0,0,1)}{((0,0,0))} \\
\cong \mathbb{Z}^{3} \oplus \mathbb{Z}
\end{gathered}
$$

4. Use structure theorem

$$
\begin{gathered}
\frac{D^{3}}{K} \cong \frac{\mathbb{Z}[i]}{(1)} \oplus \frac{\mathbb{Z}[i]}{(6)} \oplus \frac{\mathbb{Z}[i]}{(96-24 i)} \\
{\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 3 & 6 \\
2+3 i & -3 i & 12-18 i \\
2-3 i & 6+9 i & -18 i
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right]}
\end{gathered}
$$

5. Since $M_{t}$ is a torsion $D$-submodule of $M, M / M_{t}$ is torsion-free and finite generated. Claim: $M / M_{t}$ is free.
Let $F=M / M_{t}$ and $u_{1}, u_{2}, \cdots, u_{k}, v_{1}, v_{2}, \cdots, v_{n-k}$ be generators of $F$, where $S=$ $\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$ is a maximal linearly independent subset of these generators. Then
$\left\{v_{i}, u_{1}, \cdots, u_{k}\right\}$ is linearly dependent for each $v_{i}$, that is, there exist $a_{i}, r_{1}, \cdots, r_{k} \in D$ such that

$$
a_{i} v_{i}+r_{1} u_{1}+\cdots+r_{k} u_{k}=0
$$

Let $a=a_{1} a_{2} \cdots a_{n-k}$, then $a v_{i} \in \operatorname{Span}(S), \forall 1 \leq i \leq n-k$
Hence $a F:=\{a v \mid v \in F\}$ is a $D$-submodule of $\operatorname{Span}(S)$. Since $\operatorname{Span}(S)$ is a free $D$ submodule with basis $S$, $a F$ is also free.
Define a surjective homomorphism

$$
\tau: F \rightarrow a F \text { by } \tau(v)=a v \text { for all } v \in F
$$

Since $F$ is torsion-free, $\tau$ is also $1-1$. Hence $\tau$ is an isomorphism and thus $F \cong a F$. Therefore, $F$ is free. Consider a surjective homomorphism

$$
\pi: M \rightarrow M / M_{t} \text { from } M \text { onto the free module } M / M_{t}
$$

Let $\mathbb{B}$ be a basis of $M / M_{t}$. Note $\operatorname{ker}(\pi)=M_{t}$. For each $b \in \mathbb{B}$, choose one $b^{\prime} \in M$ with the property that $\pi\left(b^{\prime}\right)=b$. Let $\mathbb{B}^{\prime}=\left\{b^{\prime} \in M \mid \pi\left(b^{\prime}\right)=b, b \in \mathbb{B}\right\} \subseteq M$. Note $\mathbb{B}^{\prime}$ is linearly independent. Hence $\operatorname{Span}\left(\mathbb{B}^{\prime}\right)$ is a free $D$-submodule of $M$ with basis $\mathbb{B}^{\prime}$.
Claim: $M_{t} \cap \operatorname{Span}\left(\mathbb{B}^{\prime}\right)=\{0\}$.
6. (a) By Theorem 1.15

$$
\left\{A_{i} \mid i \in I\right\}=\left\{\begin{array}{l}
1 . A=\Sigma\left\{A_{i}\right\} \\
2 . A_{t} \cap A_{t^{*}}=0, \forall t \in I \text { where } A_{t^{*}}=\Sigma_{i \in I, i \neq t} A_{i}
\end{array} \Longrightarrow A \cong \Sigma A_{i}\right.
$$

1. $M_{p_{i}}$ is a M-submodule, $\forall p_{i}$
A. $a, b \in M_{p_{i}} \Rightarrow p^{r} a=0$ and $p^{s} b=0$, where $r, s \in \mathbb{N}$

Let $t=\max \{r, s\} \Rightarrow p^{t}(a+b)=0 \Rightarrow a+b=M_{p}$
B. $r \in \mathbf{R}, a \in M_{p} \Rightarrow p^{s} a=0$
$\therefore p^{s} r a=r\left(p^{s} a\right)=r 0=0$
2. Let $0 \neq a \in M, O_{a}=r \quad \mathrm{PID} \Rightarrow \mathrm{UFD}$
$\therefore$ Let $r=p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$
Let $r_{i}=p_{1}^{n_{1}} \cdots p_{i-1}^{n_{i}-1} p_{i+1}^{n_{i+1}} \cdots p_{k}^{n_{k}}$
$i \neq j \quad r_{i}, r_{j}$ are relatively prime $\stackrel{\mathrm{Thm} 3.11}{\Longrightarrow} 1_{R}=\Sigma s_{i} r_{i}$
$a=a \cdot 1_{R}=\Sigma s_{i} r_{i} a$
$p_{i}^{n_{i}}\left(s_{i} r_{i} a\right)=s_{i} r a=0$
$\therefore s_{i} r_{i} a \in M_{p_{i}}$
(b) Clearly.
(c) $|G|<\infty, \forall g \in G \quad|G| \cdot g=\underbrace{g+g+\cdots+g}_{|G|}=0$

Let $m, n \in \mathbb{Z}$ and $x, y \in G$
$n>0, n x=\overbrace{x+x+\cdots+x}^{n}$
$n=0, n x=0$
$n<0, n x=\underbrace{(-x)+(-x)+\cdots+(-x)}_{-n}$
i. A. $n>0$

$$
\begin{aligned}
n(x+y) & =\underbrace{(x+y)+\cdots+(x+y)}_{n} \\
& =\underbrace{x+x+\cdots+x}_{n}+\underbrace{y+y+\cdots+y}_{n} \\
& =n x+n y
\end{aligned}
$$

B. $n=0$

$$
n(x+y)=0=0+0=n x+n y
$$

C. $n<0$

$$
\begin{aligned}
n(x+y) & =\underbrace{((-x)+(-y))+\cdots+((-x)+(-y))}_{-n} \\
& =\underbrace{(-x)+(-x)+\cdots+(-x)}_{-n}+\underbrace{(-y)+(-y)+\cdots+(-y)}_{-n} \\
& =n x+n y
\end{aligned}
$$

ii. $(n+m) x=n x+m x$
iii. $(m n) x=m(n x)$
(d) Method 1: factor decomposition

$$
\begin{aligned}
72 & \longleftrightarrow \mathbb{Z}_{72} \\
2,36 & \longleftrightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{36} \\
3,24 & \longleftrightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{24} \\
6,12 & \longleftrightarrow \mathbb{Z}_{6} \oplus \mathbb{Z}_{12} \\
2,2,18 & \longleftrightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{18} \\
2,6,6 & \longleftrightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{6} \oplus \mathbb{Z}_{6}
\end{aligned}
$$

By factor decomposition, there are six finite groups of order 72 up to isomorphism.

Method 2: primary decomposition

$$
\begin{aligned}
72 & =2^{3} \times 3^{2} \\
M & =M_{2} \oplus M_{3} \\
\left|M_{2}\right|=8 & \rightarrow \mathbb{Z}_{8}, \mathbb{Z}_{2} \oplus \mathbb{Z}_{4}, \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \\
\left|M_{3}\right|=9 & \rightarrow \mathbb{Z}_{9}, \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}
\end{aligned}
$$

By primary decomposition, there are $3 \times 2=6$ finite groups of order 72 up to isomorphism.

