Homework 11

1. Determine all the $n \times n$ matrices in rational canonical form over \mathbb{R} with minimal polynomial $\lambda^{2}+1$.

Sol. Let A be such an $n \times n$ matrix. Consider $\lambda I-A^{t}$ as its rational canonical form. Then $\operatorname{det}\left(\lambda I-A^{t}\right)=\operatorname{det}\left(\operatorname{diag}\left(1, \ldots, 1, d_{1}, \ldots, d_{s}\right)\right)=d_{1} d_{2} \cdots d_{s}$. Since $d_{s}=\lambda^{2}+1$, we have $d_{1}=\cdots=d_{s}=\lambda^{2}+1, s=\frac{n}{2}, n$ is even. Hence the canonical form is like:

$$
\left.\left.\Lambda=\left[\begin{array}{ccccc}
{\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]} & & & & \\
& & {\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]} & & \\
\\
& & & \ddots & \\
& & & & \ddots
\end{array}\right] \begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\right]_{n \times n}
$$

2. Prove the injective case in The Short Five Lemma.

Proof. Assume α, γ are both injective. Let $b \in B$ and suppose $\beta(b)=0$. By commutative, $r g(b)=g^{\prime} \beta(b)=g^{\prime}(0)=0$. Since γ is injective, we have $g(b)=0$. Then by the definition, $b \in \operatorname{Ker}(g)=\operatorname{Im}(f)$, and hence $b=f(a)$, for some $a \in A$. By commutative again, $f^{\prime} \alpha(a)=\beta f(a)=$ $\beta(b)=0$. Then $\alpha(a) \in \operatorname{Ker}\left(f^{\prime}\right)$. Since f^{\prime} is an 1-1 mapping, $\alpha(a)=0$. And furthermore, $a=0$ because of the injection of α. Thus we have $b=f(a)=0$ and β is injective.
3. (The Five Lemma) Suppose we have the following commutative diagram of R-module homomorphisms with exact rows.

(a) Prove directly f_{1} surjection and f_{2}, f_{4} injection $\Rightarrow f_{3}$ injection.

Proof. Pick any $x \in M_{3}$ such that $f_{3}(x)=0$. Then $0=h_{3}\left(f_{3}(x)\right)=$ $f_{4}\left(g_{3}(x)\right)$. Since f_{4} is $1-1$, we have $g_{3}(x)=0$. In the other way, there exists an element a in M_{2} such that $g_{2}(a)=x$. Then $h_{2}\left(f_{2}(a)\right)=$ $f_{3}\left(g_{2}(a)\right)=f_{3}(x)=0$. Let $b \in N_{1}, c \in M_{1}$ such that $h_{1}(b)=f_{2}(a)$ and $\left.f_{(} c\right)=b$. Thus, $f_{2}(a)=h_{1}(b)=h_{1}\left(f_{1}(c)\right)=f_{2}\left(g_{1}(c)\right)$. By the injection of $f_{2}, a=g_{1}(c)$. This implies $x=g_{2}(a)=g_{2}\left(g_{1}(c)\right)=0$.
(b) Prove (a) by using The Short Five Lemma.

Proof. Consider the following diagram obtained from above one:

$$
\begin{aligned}
& 0 \longrightarrow M_{2} / \operatorname{Ker}\left(g_{2}\right) \xrightarrow{\overline{g_{2}}} \quad M_{3} \quad \xrightarrow{\overline{g_{3}}} \operatorname{Img}\left(g_{3}\right) \quad 0 \\
& \overline{f_{2}} \downarrow \quad \circlearrowright \quad f_{3} \downarrow \quad \circlearrowright \quad \overline{f_{4}} \downarrow \\
& 0 \longrightarrow N_{2} / \operatorname{Ker}\left(h_{2}\right) \underset{\overline{h_{2}}}{\longrightarrow} \quad N_{3} \underset{\overline{h_{3}}}{\longrightarrow} \operatorname{Img}\left(h_{3}\right) \longrightarrow 0
\end{aligned}
$$

We note that $\overline{f_{2}}:=M_{2} / \operatorname{Ker}\left(g_{2}\right) \rightarrow N_{2} / \operatorname{Ker}\left(h_{2}\right)$ by $\overline{m_{2}} \mapsto \overline{f_{2}\left(m_{2}\right)}$, and the definition of $\overline{f_{4}}$ is similar. Using The Short Five Lemma, it suffices to check $\overline{f_{2}}, \overline{f_{4}}$ are well-defined, injective and the diagram is commutative. Well-defined is routine, so we only show that $\overline{f_{2}}$ is injective and the commutative part.

First, pick any $\overline{m_{2}} \in M_{2} / \operatorname{Ker}\left(g_{2}\right)$ such that $\overline{f_{2}\left(m_{2}\right)}=0$. Since $f_{2}\left(m_{2}\right) \in \operatorname{Ker}\left(h_{2}\right)=\operatorname{Img}\left(h_{1}\right), f_{2}\left(m_{2}\right)=h_{1}\left(n_{1}\right)=h_{1}\left(f_{1}\left(m_{1}\right)\right)=f_{2}\left(g_{1}\left(m_{1}\right)\right)$, for some $m_{1} \in M_{1}$ and $n_{1} \in N_{1}$. Then $m_{2}=g_{1}\left(m_{1}\right) \in \operatorname{Img}\left(g_{1}\right)=$ $\operatorname{Ker}\left(g_{2}\right)$, implies that $\overline{m_{2}}=0$. Hence $\overline{f_{2}}$ is injective.

Furthermore, $f_{3}\left(\overline{g_{2}}\left(\overline{m_{2}}\right)\right)=f_{3}\left(g_{2}\left(m_{2}\right)\right)=h_{2}\left(f_{2}\left(m_{2}\right)\right)=\overline{h_{2}}\left(\overline{f_{2}\left(m_{2}\right)}\right)=$ $\overline{h_{2}}\left(\overline{f_{2}}\left(\overline{m_{2}}\right)\right)$. Then $f_{3} \overline{g_{2}}=\overline{h_{2} f_{2}}$, and the diagram is commutative. And hence f_{3} is injective by The Short Five Lemma.
(c) Prove directly f_{5} injection and f_{2}, f_{4} surjection $\Rightarrow f_{3}$ surjection.

Proof. Pick any $y \in N_{3}$, there exists $a \in M_{4}$ such that $f_{4}(a)=h_{3}(y)$. Then $0=h_{4}\left(h_{3}(y)\right)=h_{4}\left(f_{4}(a)\right)=f_{5}\left(g_{4}(a)\right)$. This implies $g_{4}(a)=0$ and thus $a \in \operatorname{Ker}\left(g_{4}\right)=\operatorname{Img}\left(g_{3}\right)$. Hence there exists $b \in M_{3}$ such that $g_{3}(b)=a$.

Now, the following is routine. $h_{3}\left(f_{3}(b)-y\right)=f_{4}\left(g_{3}(b)-h_{3}(y)\right)=0$, then there exists $c \in N_{2}$ such that $h_{2}(c)=f_{3}(b)-y$. Since f_{2} is onto, there exists $d \in M_{2}$ such that $f_{2}(d)=c$. Then $h_{2}\left(f_{2}(d)\right)=f_{3}(b)-y$. Thus, we have $f_{3}\left(g_{2}(d)\right)=f_{3}(b)-y$. Hence $y=f_{3}\left(b-g_{2}(d)\right)$.
(d) Prove (c) by using The Short Five Lemma.

Proof. Consider the following diagram similar to (b):

$$
\left.\begin{array}{cccccc}
0 \longrightarrow & M_{2} / \operatorname{Ker}\left(g_{2}\right) & \xrightarrow{\overline{g_{2}}} & M_{3} & \xrightarrow{\longrightarrow} & \operatorname{Img}\left(g_{3}\right)
\end{array}\right] 0
$$

We note that the definitions of all new functions are equal to those in (b). Similar to (b), it suffices to show that $\overline{f_{2}}, \overline{f_{4}}$ are well-defined, surjective and the diagram is commutative.

Pick $n_{3} \in N_{3}$, we want to find $m_{3} \in M_{3}$ such that $f_{4}\left(g_{3}\left(m_{3}\right)\right)=$ $h_{3}\left(n_{3}\right)$. Since f_{4} is onto, we can find $m_{4} \in M_{4}$ such that $f_{4}\left(m_{4}\right)=$ $h_{3}\left(n_{3}\right)$. Then $0=h_{4}\left(h_{3}\left(n_{3}\right)\right)=h_{4}\left(f_{4}\left(m_{4}\right)\right)=f_{5}\left(g_{4}\left(m_{4}\right)\right)$. And since f_{5} is injective, we have $g_{4}\left(m_{4}\right)=0$, i.e. $m_{4} \in \operatorname{Ker}\left(g_{4}\right)=\operatorname{Img}\left(g_{5}\right)$. Choose $m_{3} \in M_{3}$ such that $g_{3}\left(m_{3}\right)=m_{4}$. Then $f_{4}\left(g_{3}\left(m_{3}\right)\right)=f_{4}\left(m_{4}\right)=f_{3}\left(n_{3}\right)$. Finally, by the Short Five Lemma, f_{3} is surjective.

