4．Suppose $0 \rightarrow M_{1} \xrightarrow{f} M \xrightarrow{g} M_{2} \rightarrow 0$ ．
Then there exists $h: M_{2} \rightarrow M$ s．t $g h=I_{M_{2}}$
$\Leftrightarrow 0 \rightarrow M_{1} \xrightarrow{f} M \xrightarrow{g} M_{2} \rightarrow 0$ and $0 \rightarrow M_{1} \rightarrow M_{1} \oplus M_{2} \rightarrow M_{2} \rightarrow 0$ are isomorphic．

Pf：(\Rightarrow)

$0 \rightarrow M_{1} \xrightarrow{f} M \xrightarrow{g} M_{2} \rightarrow 0$
Let $m_{1} \in M_{1}, m_{2} \in M_{2}$ ．
Define $\phi: M_{1} \oplus M_{2} \rightarrow M$ by $\phi:\left(\left(m_{1}, m_{2}\right)\right)=f\left(m_{1}\right)+h\left(m_{2}\right)$
Claim：commutative

$$
\begin{aligned}
& \phi \tau\left(m_{1}\right)=\phi((m, 0))=f\left(m_{1}\right)+h(0)=f\left(m_{1}\right)=f I_{M_{1}}\left(m_{1}\right) \\
& g \phi\left(\left(m_{1}, m_{2}\right)\right)=g\left(f\left(m_{1}\right)+h\left(m_{2}\right)\right) \\
& =g f\left(m_{1}\right)+g h\left(m_{2}\right) \\
& =0+I_{M_{2}}\left(m_{2}\right) \\
& =I_{M_{2}} \pi\left(\left(m_{1}, m_{2}\right)\right)
\end{aligned}
$$

By Five Short Lemma，ϕ is an isomorphism．
Thus these two exact sequences are isomorphic．
(\Leftarrow)
Define $\rho: M_{2} \rightarrow M_{1} \oplus M_{2}$ by $\rho\left(m_{2}\right)=\left(0, m_{2}\right)$
Let $h=\phi \rho \Rightarrow g h=I_{M_{2}}$ ．
5. (a) Show that if $\oplus_{i \in I} P_{i}$ is projective then P_{i} is projective for each $i \in I$ (b) Show that if P_{i} for each $i \in I$ is projective then $\oplus_{i \in I} P_{i}$ is projective.

Pf: (a)
$\exists L$ s.t $L \oplus\left(\oplus_{i \in I} P_{i}\right)$ is free module.
$\Rightarrow\left(L \oplus\left(\underset{\substack{i \in I \\ i \neq j}}{ } P_{i}\right)\right) \oplus P_{j}$ is free module. $\forall j \in I$
$\Rightarrow P_{j}$ is projective, $\forall j \in I$
(b)
$\because P_{i}$ is projective, $\forall i \in I$
$\therefore \exists L_{i}$ s.t $L_{i} \oplus P_{i}$ free, $\forall i \in I$
Consider $\oplus_{i \in I}\left(L_{i} \oplus P_{i}\right)$ is also free $\cong\left(\oplus_{i \in I} L_{i}\right) \oplus\left(\oplus_{i \in I} P_{i}\right)$
$\therefore \oplus_{i \in I} P_{i}$ is projective.
6. Show that \mathbb{Q} is not a projective \mathbb{Z}-module.

Pf:
(P is projective R -module $\Leftrightarrow \exists \mathrm{L}$ is a R-module s.t $L \oplus P$ is free R -module) Assume there exists L is a \mathbb{Z}-module s.t $L \oplus \mathbb{Q}$ is free \mathbb{Z}-module.

We try to get contradiction from this.

- Finite Dimension
$\exists\left(l_{1}, \frac{n_{1}}{m_{1}}\right),\left(l_{2}, \frac{n_{2}}{m_{2}}\right), \ldots,\left(l_{k}, \frac{n_{k}}{m_{k}}\right) \in L \oplus \mathbb{Q}$ is a basis of $L \oplus \mathbb{Q}$ where $l_{i} \in L, \frac{n_{i}}{m_{i}} \in \mathbb{Q}$, and $\left(n_{i}, m_{i}\right)=1$.
take $a=\frac{1}{2 m_{1} m_{2} \cdots m_{k}}$, then $(0, a) \in \operatorname{span}\left(\left(l_{i}, \frac{n_{i}}{m_{i}}\right), i=1, \ldots, k\right)$
$\exists c_{1}, c_{2} \cdots c_{k} \in \mathbb{Z}$ s.t $\left(0, \frac{1}{2 m_{1} m_{2} \cdots m_{k}}\right)=c_{1}\left(l_{1}, \frac{n_{1}}{m_{1}}\right)+c_{2}\left(l_{2}, \frac{n_{2}}{m_{2}}\right)+\cdots+c_{k}\left(l_{k}, \frac{n_{k}}{m_{k}}\right)$
$\Rightarrow \frac{1}{2 m_{1} m_{2} \cdots m_{k}}=c_{1} \frac{n_{1}}{m_{1}}+c_{2} \frac{n_{2}}{m_{2}}+\cdots+c_{k} \frac{n_{k}}{m_{k}}=\frac{M}{m_{1} m_{2} \cdots m_{k}}$
for some $M \in \mathbb{Z} \rightarrow \leftarrow$
- Infinite Dimension
$\exists S \subseteq L \oplus \mathbb{Q}$ is a basis and $|S|=\infty$, and $(0,1) \in \operatorname{span}(S)$
$\exists\left(l_{1}, \frac{n_{1}}{m_{1}}\right),\left(l_{2}, \frac{n_{2}}{m_{2}}\right), \ldots,\left(l_{k}, \frac{n_{k}}{m_{k}}\right) \in L \oplus \mathbb{Q}$ and $\exists c_{1}, c_{2} \cdots c_{k} \in \mathbb{Z}$
s.t $(0,1)=c_{1}\left(l_{1}, \frac{n_{1}}{m_{1}}\right)+c_{2}\left(l_{2}, \frac{n_{2}}{m_{2}}\right)+\cdots+c_{k}\left(l_{k}, \frac{n_{k}}{m_{k}}\right)$,
take $\quad a=\frac{1}{2 m_{1} m_{2} \cdots m_{k}},(0, a) \notin \operatorname{span}\left(\left(l_{i}, \frac{n_{i}}{m_{i}}\right), i=1, \ldots, k\right)$,
but $a \in \operatorname{span}(S)$, take $\left(l_{k+1}, \frac{n_{k+1}}{m_{k+1}}\right),\left(l_{k+2}, \frac{n_{k+2}}{m_{k+2}}\right), \ldots,\left(l_{k+b}, \frac{n_{k+b}}{m_{k+b}}\right) \in S$
s.t $(0, a) \in \operatorname{span}\left(\left(l_{i}, \frac{n_{i}}{m_{i}}\right), i=1, \ldots, k+b\right)$
$\exists c_{1}^{\prime}, c_{2}^{\prime} \cdots c_{k}^{\prime} \in \mathbb{Z}$ s.t $(0, a)=c_{1}^{\prime}\left(l_{1}, \frac{n_{1}}{m_{1}}\right)+c_{2}^{\prime}\left(l_{2}, \frac{n_{2}}{m_{2}}\right)+\cdots+c_{k+b}^{\prime}\left(l_{k+b}, \frac{n_{k+b}}{m_{k+b}}\right)$
$\exists c_{k+b}^{\prime} \neq 0$ for some i
$2 m_{1} m_{2} \cdots m_{k}(0, a)=(0,1)=2 m_{1} m_{2} \cdots m_{k}\left(c_{1}^{\prime}\left(l_{1}, \frac{n_{1}}{m_{1}}\right)+c_{2}^{\prime}\left(l_{2}, \frac{n_{2}}{m_{2}}\right)+\cdots+c_{k+b}^{\prime}\left(l_{k+b}, \frac{n_{k+b}}{m_{k+b}}\right)\right)$
$\because \exists c_{k+b}^{\prime} \neq 0 \Rightarrow S$ isn't linearly independent.

