H.W. 2

1.

(1)let $u=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}, v=a_{1}^{\prime} b_{1}^{\prime}+a_{2}^{\prime} b_{2}^{\prime}+\ldots+a_{n}^{\prime} b_{n}^{\prime}$
$\Longrightarrow u-v=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n} a_{1}^{\prime}+(-1) b_{1}^{\prime}+(-1) a_{2}^{\prime} b_{2}^{\prime}+\ldots+(-1) a_{n}^{\prime} b_{n}^{\prime}$
(2) A is a ideal
$\Longrightarrow r A \subseteq A$ for $r \in R$
$\Longrightarrow r(A B)=(r A) B \subseteq A B$
similarly, $(A B) r \subseteq A B$
2.
$(\Rightarrow) 1+P \in R / P, 0+P \in R / P$
P is prime $\Longrightarrow P \neq R \Longrightarrow 1 \notin P \Longrightarrow 1+P \neq P$
$\because R$ is commutative $\Longrightarrow R / P$ is commutative
if $(a+P)(b+P)=P$ where $a+P, b+P \in R / P$
$\Longrightarrow a b+P=P \Longrightarrow a b \in P \Longrightarrow a \in P$ or $b \in P(\because P$ is prime $)$
$\Longrightarrow a+P=P$ or $b+P=P$
$(\Leftarrow) R / P$ is an integral domain
$1+P \neq P=0+P \Longrightarrow 1 \notin P \Longrightarrow P \neq R$
$\because a b \in P \Longrightarrow a b+P=P \Longrightarrow(a+P)(b+P)=P \Longrightarrow a+P=P$ or $b+P=P$
$\Longrightarrow a \in P$ or $b \in P \Longrightarrow P$ is prime
3.
(a) given $(a+M),(b+M) \in R / M$
$(a+M)(b+M)=(a b+M)=(b a+M)=(b+M)(a+M) \therefore R / M$ is commutative
If $a+M \neq M$ then we want to find $(a+M)^{-1}$.
Since M is maximal, R is commutative $M+(a)=R$.
$\therefore 1=m+r a$ for some $m \in M, r \in R$
$\Longrightarrow 1-r a=m \in M \Longrightarrow 1+M=r a+M=(r+M)(a+M) \Longrightarrow(a+M)^{-1}$ exists
(b) R / M is a division ring
$1+M \neq 0+M=M \Longrightarrow 1 \notin M \Longrightarrow M \neq R$
let $M \subseteq N \subseteq R, N$ is an ideal $\Longrightarrow N \neq M$
let $a \in N-M \exists a b+M=(a+M)(b+M)=1+M \Longrightarrow a b \in 1+M$ (i.e. $\exists c \in M$ s.t. $a b=1+c)$
(c)let $R=M_{2}(\mathbb{R})$ then $\left.\left\{\begin{array}{cc}0 \\ 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right)\right\}$ and R are the only ideals of R
$\Longrightarrow\left\{\begin{array}{cc}0 & 1 \\ 0 \\ 1 & \left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\end{array}\right]$ is a maximal ideal of R
let $M=\left\{\begin{array}{ll}0 \\ 1 & \left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\end{array}\right\}$
We can find $\left(\begin{array}{ll}0 \\ 1\end{array}\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)+M\right) \in R / M$
${ }_{0}\left(\begin{array}{ll}0 & 1 \\ 0 & 1 \\ 0 & 0\end{array}\right)^{-1}$ not exists
$(\mathrm{d}) R$ is commutative, M is a maximal ideal. $\Longrightarrow R / M$ is a field $(\because$ (a) $)$
$\Longrightarrow R / M$ is an integral domain
$\Longrightarrow M$ is a prime ideal $(\because 3)$
4.
(a) $a_{1}, a_{2}, a_{3} \in R$
$\exists a \in R$ s.t. $a-a_{i} \in I_{i}$
$a_{1}=b_{1}+c_{1}$ where $b_{1} \in I_{1}, c_{1} \in I_{2} \cap I_{3}$
$a_{2}=b_{2}+c_{2}$ where $b_{2} \in I_{2}, c_{2} \in I_{1} \cap I_{3}$
$a_{3}=b_{3}+c_{3}$ where $b_{3} \in I_{3}, c_{3} \in I_{1} \cap I_{2}$
Pick $a=c_{1}+c_{2}+c_{3}$
$a-a_{1}=c_{1}+c_{2}+c_{3}-\left(b_{1}+c_{1}\right)=c_{2}+c_{3}-b_{1} \in I_{1}$
Similarly, $a-a_{2} \in I_{2}, a-a_{3} \in I_{3}$
(b) define $\phi: R \rightarrow R / I_{1} \times R / I_{2} \times R / I_{3}$ by $\phi(a)=\left(a+I_{1}, a+I_{2}, a+I_{3}\right)$
check home. and onto(a), and $\operatorname{Ker}(\phi)=I_{1} \cap I_{2} \cap I_{3}$. The problem then follows by first homomorphism theorem.
(c)let $I_{1}=\left(n_{1}\right), I_{2}=\left(n_{2}\right), I_{3}=\left(n_{3}\right)$

By (a), choose a s.t. $a-a_{i} \in I_{i}\left(\right.$ i.e. $\left.a-a_{i}\left(\bmod n_{i}\right)\right)$
$n_{1}, n_{2}, n_{3} \in \mathbb{N}$ where $\left(n_{i}, n_{j}\right)=1, i \neq j$
$\mathbb{Z} /\left(\operatorname{lcm}\left(n_{1}, n_{2}, n_{3}\right)\right) \cong \mathbb{Z} /\left(n_{1}\right) \times \mathbb{Z} /\left(n_{2}\right) \times \mathbb{Z} /\left(n_{3}\right)$
5.
(a) (6)
(b)check: \sqrt{I} is an ideal
(i)if $a, b \in \sqrt{I} \Longrightarrow \exists n, m \in \mathbb{N}$ s.t. $a^{n}, a^{m} \in I$
$\Longrightarrow(a-b)^{n+m}=a^{n+m}-\binom{n+m}{1} a^{n+m-1} b+\ldots+(-1)^{m}\binom{n+m}{m} a^{n} b^{m}+(-1)^{m+1}\binom{n+m}{m+1} a^{n-1} b^{m+1}+$
$\ldots+(-1)^{n+m} b^{n+m} \in I$
$\therefore a-b \in \sqrt{I}$
Let $a \in \sqrt{I}, b \in R$ (i.e. $\exists n$ s.t. $a^{n} \in I$)
$\Longrightarrow(a b)^{n}=a^{n} b^{n} \in I$ and $(b a)^{n}=b^{n} a^{n} \in I$, since I is commutative.
(ii)radical
if $a^{n} \in \sqrt{I} \Longrightarrow \exists m \in \mathbb{N}$ s.t. $\left(a^{n}\right)^{m} \in I \Longrightarrow a^{n m} \in I \Longrightarrow a \in \sqrt{I}$

