H.W. 5

1.

F be a field
Claim: $F[x]$ is a ED $(\Rightarrow$ PID \Rightarrow UFD $)$
$f=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} \in F[x], a_{n} \neq 0$
$g=b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+b_{1} x+b_{0} \in F[x], b_{m} \neq 0$
check: $\exists q, r \in F[x]$ s.t. $f=q g+r, r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$
$\operatorname{deg}(g)=m \neq 0, b_{m}=0$
Case1. $n<m$
let $q=0, r=f$ then $f=0 g+f \therefore n=\operatorname{deg}(r)<\operatorname{deg}(g)=m$
Case2. $n \geq m$ (By induction on n)
Basic step: $n=0$ then $m=0$
let $f=a_{0}, g=b_{0} \neq 0$
let $q=a_{0} b_{0}^{-1}$, then $a_{0}=\left(a_{0} b_{0}^{-1}\right) b_{0}+0$ is true.
Induction step: Assume that $\operatorname{deg}\left(f^{\prime}\right)<n$, the assertion is true.
let $f^{\prime}=f-\left(a_{n} b_{m}^{-1} x^{n-m}\right) g=f-a_{n} x^{n}-a_{n} b_{m}^{-1} b_{m-1} x^{n-1}-\ldots$, then $\operatorname{deg}\left(f^{\prime}\right)<n$.
(By induction hypothesis) $\exists q^{\prime}, r \in F[x]$ s.t. $f^{\prime}=q^{\prime} g+r$ where $r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$.
Then $f-\left(a_{n} b_{n}^{-1} x^{n-m}\right) g=q^{\prime} g+r$
Hence $f=q g+r\left(q=q^{\prime}+a_{n} b_{m}^{\prime} x^{n-m}\right)$
2.
(a)(i) $f(x)=a_{0}+{ }_{1} x+\ldots$ where a_{0} is unit in \mathbb{R}.

Then f is unit in $R[[x]]$.
Since 1 is unit in \mathbb{Z}.
Hence $x+1$ is unit in $\mathbb{Z}[[x]]$.
(ii)Suppose $x+1$ is unit in $\mathbb{Z}[x]$.
let $(x+1)^{-1}=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$
(i.e. $\left.(x+1) *\left(a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}\right)=1\right)$

Then $a_{n} x^{n+1}+\left(a_{n}+a_{n-1}\right) x^{n}+\ldots+\left(a_{1}+a_{0}\right) x+a_{0}=1$.
Then $a_{0}=1, a_{1}=a_{2}=\ldots=a_{n}=0$. This implies $x+1=x$, a contradiction.
(b) $x^{2}+3 x+2=(x+2)(x+1)$
(i) \because (a) $x+1$ is unit in $\mathbb{Z}[[x]]$

Since $x+2$ is irreducible in $\mathbb{Z}[[x]], x^{2}+3 x+2$ is irreducible.
(ii) $\mathrm{x}+1, \mathrm{x}+2$ are nonunits in $\mathbb{Z}[x]$.
3.
(a) $(x)=x f(x) \mid f(x) \in F[x]$
(i)Suppose (x) is not a maximal ideal, there exists M s.t. $(x) \subsetneq M \subsetneq F[x]$.

Then for every $g(x) \in M-(x), g(x)=a+f(x)$ for some $f(x) \in(x)$ and $a \neq 0 \in F$.
Since $f(x), g(x) \in M$ and M is ideal, then $g(x)-f(x) \in M$.
For $h(x) \in F[x]$
Since $a \in M$ and M is ideal, then $a h(x) \in M$
$\because F$ is a field $\therefore \frac{h(x)}{a} \in F[x]$
Then $h(x)=a \frac{h(x)}{a} \in M$

Hence $F[x] \subseteq M \subsetneq F[x]$, a contradiction.
(ii)Claim: For $p(x)$ is irreducible, then $(\mathrm{p}(\mathrm{x}))$ is a maximal ideal.

Suppose not, there exists N be a maximal ideal s.t. $(p(x)) \subsetneq N \subsetneq F[x]$.
Since F is a field, implies $N=(g(x))$ (i.e. N is prime ideal).
There exists $q(x)$ s.t. $p(x)=g(x) q(x)$.
But $p(x)$ is irreducible, implies $g(x)$ or $q(x)$ is unit.
Thus $g(x)$ or $q(x) \in F$
W.L.O.G., let $q(x) \in F$
let $p(x)=c g(x)$ for $c \in F$
Then $g(x)=\frac{p(x)}{c}$
Thus $g(x) \in(p(x))$, a contradiction.
(b)Claim: (i) $F[[x]]$ is an integral domain. (ii) All ideals are principle.
(i)check: $F[[x]]$ has no zero divisor.
let $A=\sum_{i=0}^{\infty} a_{i} x^{i} \neq 0, B=\sum_{i=0}^{\infty} b_{i} x^{i} \neq 0$
There exist $\alpha, \beta \in \mathbb{N}$ s.t. $a_{\alpha}, b_{\beta} \neq 0$ and $\forall i<\alpha, j<\beta \alpha_{i}, \beta_{j}=0$.
Then $A B=a_{\alpha} b_{\beta} x^{\alpha+\beta}+\ldots \neq 0$.
(ii)Pick an ideal $I \subseteq F[[x]]$.

Suppose $I \neq(0),(1)$.
Pick $0 \neq f(x) \in I$ with the lost degree term is the least among all nonzero elements in I. Suppose $f(x)=a_{i} x^{i}+a_{i+1} x^{i+1}+\ldots$ where $a_{i} \neq 0$.
It is easy to check $I=\left(x^{i}\right)$, done!
4.
(a)check: $\exists(1-a b)^{-1}$ s.t. $(1-a b)(1-a b)^{-1}=1$ and $\exists(1-b a)^{-1}$ s.t. $(1-b a)(1-b a)^{-1}=1$

Since $(1-a b)^{-1}=\frac{1}{1-a b}=1+a b+a b a b+\ldots$
then $(1-b a)^{-1}=\frac{1}{1-b a}=1+b a+b a b a+\ldots=1+b(1+a b+a b a b+\ldots) a=1+b(1-a b)^{-1} a$
Hence $(1-b a)\left(1+b(1-a b)^{-1} a\right)=1-b a+b(1-a b)^{-1} a-b a b(1-a b)^{-1} a=1-b(1-$ $a b)(1-a b)^{-1} a=1-b a+b a=1$
similarly, $\left(1+b(1-b a)^{-1} a\right)(1-a b)=1$
(b)Suppose not, assume that a has more than one right inverse and it has finitely many. Let $b_{1}, b_{2}, \ldots, b_{n}$ are distinct right inverse of a.
Then $b_{1}, b_{1}+1-b_{1} a,, b_{1}+1-b_{2} a,, b_{1}+1-b_{3} a, \ldots,, b_{1}+1-b_{n} a$, are n+1 distinct right inverse of a.
(1) $a\left(b_{1}+1-b_{i} a\right)=a b_{1}+a-\left(a b_{i}\right) a=1+a-a=1$ for $i=1,2, \ldots, n$
(2) $b_{1}+1-b_{i} a \neq b_{1}$ for $i=1,2, \ldots, n$
if $b_{1}+1-b_{i} a=b_{1}$ for some i, then $b_{i} a=1$
Pick b is a right inverse of a
Since $a b=1$ then $b_{i}=b_{i}(a b)=\left(b_{i} a\right) b=b$
Implies, right inverse of a is uniquely determined, a contradiction.
(3)Claim: $b_{1}+1-b_{i} a \neq b_{1}+1-b_{j} a$ for $i \neq j$
if $b_{1}+1-b_{i} a=b_{1}+1-b_{j} a \Rightarrow b_{i} a=b_{j} a$
$\Rightarrow\left(b_{i}-b_{j}\right) a=0$
$\Rightarrow\left(b_{i}-b_{j}\right)\left(a b_{1}\right)=0$
$\Rightarrow b_{i}=b_{j}$, a contradiction.
(c) $a, b \in R, a, b, a b-1$ units
(1)check: $a-b^{-1}$ is unit

Since $\left(a-b^{-1}=(a b-1) b^{-1}\right.$
Hence $\left[b(a b-1)^{-1}\right]\left(a-b^{-1}\right)=\left[b(a b-1)^{-1}\right]\left[(a b-1) b^{-1}\right]=b b^{-1}=1$ and $\left(a-b^{-1}\right)[b(a b-$
$\left.1)^{-1}\right]=(a b-1) b^{-1} b(a b-1)^{-1}=1$
(2)check: $\left(a-b^{-1}\right)^{-1}-a^{-1}$ is unit

Since $a\left[\left(a-b^{-1}\right)^{-1} a-1\right]^{-1}=a b a-a$
Then $\left(\left(a-b^{-1}\right)^{-1}-a^{-1}\right)(a b a-a)=\left(a-b^{-1}\right)^{-1}(a b a-a)-(b a-1)=\left(a-b^{-1}\right)^{-1}(a+$ $\left.b^{-1}\right) b a-b a+1=1$
similarly, $(a b a-a)\left[\left(a-b^{-1}\right)^{-1}-a^{-1}\right]=1$
5.
(a) $\mu\left(n_{1}, n_{2}\right)=\mu\left(n_{1}\right) \mu\left(n_{2}\right)$ if $\left(n_{1}, n_{2}\right)=1$.

Case1. One of n_{1}, n_{2} is 1
W.L.O.G., $\mu\left(n_{1}, n_{2}\right)=\mu\left(n_{2}\right)=\mu\left(n_{1}\right) \mu\left(n_{2}\right)$

Case2. One of n_{1}, n_{2} has a square factor.
So does $n_{1} n_{2}$. Then $\mu\left(n_{1}, n_{2}\right)=0=\mu\left(n_{1}\right) \mu\left(n_{2}\right)$
Case3. Since $\left(n_{1}, n_{2}\right)=1$
We can assume $n_{1}=p_{1} p_{2} \ldots p_{s}, n_{2}=q_{1} q_{2} \ldots q_{t}$ where p_{i}, q_{i} are distinct primes.
Then $\mu\left(n_{1}, n_{2}\right)=(-1)^{s+t}=(-1)^{s}(-1)^{t}=\mu\left(n_{1}\right) \mu\left(n_{2}\right)$
(b) Case1. If $n=1 \sum_{d \mid n} \mu(d)=\sum_{d \mid 1} \mu(d)=\mu(1)=1$

Case2. If $n \neq 1$, let $n=p_{1}^{s_{1}} p_{2}^{s_{2}} \ldots p_{t}^{s_{t}}$ where p_{i} are distinct prime and $s_{i} \geq 1$.
$\sum_{d \mid n} \mu(d)=\sum_{d \mid p_{1} p_{2} \ldots p_{t}} \mu(d)=\sum_{i=0}^{t}\binom{t}{i}(-1)^{i}=(1-1)^{t}=0$
(c) $\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \sum_{d^{\prime} \mid n} f\left(d^{\prime}\right)=\sum_{d^{\prime} \mid n} f\left(d^{\prime}\right) \sum_{d \left\lvert\, \frac{n}{d^{\prime}}\right.} \mu(d)=f(n)-$ by (b)
(d) (e)

Theorem 0.1 Let $G F(q)$ be a finite field and let n be a positive integer. Then the product of all monic irreducible polynomials over $G F(q)$, whose degree divide n is

$$
f_{q^{n}}(x)=x^{q}-x
$$

Def. $N_{q}(d):=$ number of monic irreducible polynomials of degree over $G F(q)$.

Corollary 0.2 For all positive integers d and n, we have $q^{n}=\sum_{d \mid n} d N_{q}(d)$.
Corollary 0.3 $N_{q}(d)=\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) q^{d}=\frac{1}{n} \sum_{d \mid n} \mu(d) q^{n / d}$.
let $g(n)=q^{n}, f(d)=d N_{q}(d)$, done!

