
H.W.5
1.
F be a field
Claim: F [x] is a ED (⇒ PID ⇒ UFD)
f = anx

n + an−1x
n−1 + ... + a1x + a0 ∈ F [x], an 6= 0

g = bmxm + bm−1x
m−1 + ... + b1x + b0 ∈ F [x], bm 6= 0

check: ∃q, r ∈ F [x] s.t. f = qg + r, r = 0 or deg(r) < deg(g)
deg(g) = m 6= 0, bm = 0
Case1. n < m
let q = 0, r = f then f = 0g + f ∴ n = deg(r) < deg(g) = m
Case2. n ≥ m(By induction on n)
Basic step: n = 0 then m = 0
let f = a0, g = b0 6= 0
let q = a0b

−1
0 , then a0 = (a0b

−1
0 )b0 + 0 is true.

Induction step: Assume that deg(f
′
) < n, the assertion is true.

let f
′
= f − (anb−1

m xn−m)g = f − anx
n − anb−1

m bm−1x
n−1 − ..., then deg(f

′
) < n.

(By induction hypothesis)∃q′ , r ∈ F [x] s.t. f
′
= q

′
g + r where r = 0 or deg(r) < deg(g).

Then f − (anb
−1
n xn−m)g = q

′
g + r

Hence f = qg + r (q = q
′
+ anb

′
mxn−m)

2.
(a)(i)f(x) = a0 +1 x + ... where a0 is unit in R.
Then f is unit in R[[x]].
Since 1 is unit in Z.
Hence x + 1 is unit in Z[[x]].
(ii)Suppose x + 1 is unit in Z[x].
let (x + 1)−1 = anx

n + an−1x
n−1 + ... + a1x + a0

(i.e. (x + 1) ∗ (anxn + an−1x
n−1 + ... + a1x + a0) = 1)

Then anx
n+1 + (an + an−1)x

n + ... + (a1 + a0)x + a0 = 1.
Then a0 = 1, a1 = a2 = ... = an = 0. This implies x + 1 = x, a contradiction.

(b)x2 + 3x + 2 = (x + 2)(x + 1)
(i)∵ (a)x + 1 is unit in Z[[x]]
Since x + 2 is irreducible in Z[[x]], x2 + 3x + 2 is irreducible.
(ii)x+1,x+2 are nonunits in Z[x].

3.
(a)(x) = xf(x)|f(x) ∈ F [x]
(i)Suppose (x) is not a maximal ideal, there exists M s.t. (x) ( M ( F [x].
Then for every g(x) ∈ M − (x), g(x) = a + f(x) for some f(x) ∈ (x) and a 6= 0 ∈ F .
Since f(x), g(x) ∈ M and M is ideal, then g(x)− f(x) ∈ M .
For h(x) ∈ F [x]
Since a ∈ M and M is ideal, then ah(x) ∈ M

∵ F is a field ∴ h(x)
a
∈ F [x]

Then h(x) = ah(x)
a
∈ M
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Hence F [x] j M ( F [x], a contradiction.
(ii)Claim: For p(x) is irreducible, then (p(x)) is a maximal ideal.
Suppose not, there exists N be a maximal ideal s.t. (p(x)) ( N ( F [x].
Since F is a field, implies N = (g(x)) (i.e. N is prime ideal).
There exists q(x) s.t. p(x) = g(x)q(x).
But p(x) is irreducible, implies g(x) or q(x) is unit.
Thus g(x) or q(x) ∈ F
W.L.O.G., let q(x) ∈ F
let p(x) = cg(x) for c ∈ F

Then g(x) = p(x)
c

Thus g(x) ∈ (p(x)), a contradiction.

(b)Claim: (i)F [[x]] is an integral domain. (ii) All ideals are principle.
(i)check: F [[x]] has no zero divisor.
let A =

∑∞
i=0 aix

i 6= 0, B =
∑∞

i=0 bix
i 6= 0

There exist α, β ∈ N s.t. aα, bβ 6= 0 and ∀i < α, j < β αi, βj = 0.
Then AB = aαbβxα+β + ... 6= 0.
(ii)Pick an ideal I j F [[x]].
Suppose I 6= (0), (1).
Pick 0 6= f(x) ∈ I with the lost degree term is the least among all nonzero elements in I.
Suppose f(x) = aix

i + ai+1x
i+1 + ... where ai 6= 0.

It is easy to check I = (xi), done!

4.
(a)check: ∃(1−ab)−1 s.t. (1−ab)(1−ab)−1 = 1 and ∃(1−ba)−1 s.t. (1−ba)(1−ba)−1 = 1
Since (1− ab)−1 = 1

1−ab
= 1 + ab + abab + ...

then (1− ba)−1 = 1
1−ba

= 1+ ba+ baba+ ... = 1+ b(1+ab+abab+ ...)a = 1+ b(1−ab)−1a
Hence (1 − ba)(1 + b(1 − ab)−1a) = 1 − ba + b(1 − ab)−1a − bab(1 − ab)−1a = 1 − b(1 −
ab)(1− ab)−1a = 1− ba + ba = 1
similarly, (1 + b(1− ba)−1a)(1− ab) = 1

(b)Suppose not, assume that a has more than one right inverse and it has finitely many.
Let b1, b2, ..., bn are distinct right inverse of a.
Then b1, b1 + 1− b1a, , b1 + 1− b2a, , b1 + 1− b3a, ..., , b1 + 1− bna, are n+1 distinct right
inverse of a.
(1)a(b1 + 1− bia) = ab1 + a− (abi)a = 1 + a− a = 1 for i = 1, 2, ..., n
(2)b1 + 1− bia 6= b1 for i = 1, 2, ..., n
if b1 + 1− bia = b1 for some i, then bia = 1
Pick b is a right inverse of a
Since ab = 1 then bi = bi(ab) = (bia)b = b
Implies, right inverse of a is uniquely determined, a contradiction.
(3)Claim: b1 + 1− bia 6= b1 + 1− bja for i 6= j
if b1 + 1− bia = b1 + 1− bja ⇒ bia = bja
⇒ (bi − bj)a = 0
⇒ (bi − bj)(ab1) = 0
⇒ bi = bj, a contradiction.
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(c)a, b ∈ R, a, b, ab− 1 units
(1)check: a− b−1 is unit
Since (a− b−1 = (ab− 1)b−1

Hence [b(ab− 1)−1](a− b−1) = [b(ab− 1)−1][(ab− 1)b−1] = bb−1 = 1 and (a− b−1)[b(ab−
1)−1] = (ab− 1)b−1b(ab− 1)−1 = 1
(2)check: (a− b−1)−1 − a−1 is unit
Since a[(a− b−1)−1a− 1]−1 = aba− a
Then ((a − b−1)−1 − a−1)(aba − a) = (a − b−1)−1(aba − a) − (ba − 1) = (a − b−1)−1(a +
b−1)ba− ba + 1 = 1
similarly, (aba− a)[(a− b−1)−1 − a−1] = 1

5.
(a)µ(n1, n2) = µ(n1)µ(n2) if (n1, n2) = 1.
Case1. One of n1, n2 is 1
W.L.O.G., µ(n1, n2) = µ(n2) = µ(n1)µ(n2)
Case2. One of n1, n2 has a square factor.
So does n1n2. Then µ(n1, n2) = 0 = µ(n1)µ(n2)
Case3. Since (n1, n2) = 1
We can assume n1 = p1p2...ps, n2 = q1q2...qt where pi, qi are distinct primes.
Then µ(n1, n2) = (−1)s+t = (−1)s(−1)t = µ(n1)µ(n2)

(b) Case1. If n = 1
∑

d|n µ(d) =
∑

d|1 µ(d) = µ(1) = 1
Case2. If n 6= 1, let n = ps1

1 ps2
2 ...pst

t where pi are distinct prime and si ≥ 1.∑
d|n µ(d) =

∑
d|p1p2...pt

µ(d) =
∑t

i=0

(
t
i

)
(−1)i = (1− 1)t = 0

(c)
∑

d|n µ(n
d
)
∑

d
′ |n f(d

′
) =

∑
d
′ |n f(d

′
)
∑

d| n

d
′
µ(d) = f(n) —–by (b)

(d)(e)

Theorem 0.1 Let GF (q) be a finite field and let n be a positive integer. Then the product
of all monic irreducible polynomials over GF (q), whose degree divide n is

fqn(x) = xq − x

Def. Nq(d) := number of monic irreducible polynomials of degree over GF (q).

Corollary 0.2 For all positive integers d and n, we have qn =
∑

d|n dNq(d).

Corollary 0.3 Nq(d) = 1
n

∑
d|n µ(n

d
)qd = 1

n

∑
d|n µ(d)qn/d.

let g(n) = qn, f(d) = dNq(d), done!
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