0 0 1
. 01 0
Since Q = 00 0
1 0 -1
0 1
0 0
P = 1 0
1 —(A—3)2
Then P(A\ — AHQ =
2 0 0
0 0O
Hence A = 01 0
0 0 1

O OO
o o= O

Now, we want to find S.

1 0
0 1
. _1 _
First, Q=" = 10
00
U1
Then | 2 | =0Q!

21
Z2

This implies

n(z1) =n(ur) = e; =

U
U2
us
Uq

oo o

o OO

— o O O



Moreover, (A —2I)n(z) = (

So, A(n(z1)) = 2(n(z1)).

And (A — 2I)[(A - 3D)]n(z)] = (A — 2I) (

So, A[(A = 31)|n(z2)] = 2[(A = 31)]n(z2)].

= (A~ 21)[(A—20)(A ~ 3I)n(=n)] = (



However, this also implies

1
0
(A=3D[(A=2)(A=2I)n(z)] = (A=3D[(A=2I)*n(z2)] = (A=3D) | | =
1
0
0
0
0
1 0 1 1 2 0 00
0 -1 1 0 0 2 00
Thus, we get U = 0 -2 1 0 and J = 01 2 0
0 0 1 1 00 0 3
2.
=)

A and B are similar

= 38 € R™*" invertible, s.t B = S~1AS

=AM —-B=\S"15—- 57148 =S 1\S) — S71(AS) = S~Y(\[ - A)S
Since S and S~! are invertible, A\ — A and \I — B are equivalent.

(<)

Al — A and A — B are equivalent

= 3P, Q € R™ " invertible, such that A\ — B = P\ — A)Q

= A — B! = (A - B)! = (P(\[ — A)Q)! = Q*(\ — A)'P!

= M — A" and \I — B? are equivalent

= A — A" and Al — B' has the same Smith normal form diag(d;()),...d,()\))
= 35, T € R™" invertible, s.t ST'AS = A and T~'BT = A

= B=TS YAST1 = (ST1)"LA(ST)

= A, B are similar.

3.

Let the matrix be A

P\ — AYQ = D

Q'(\I — A)'Pt =Dt =D

Therefore, (AI — A*)and (A — A) has the same SNF.

= (M — A") and (A — A) have the same rational canonical form.
Then 35, T s.t ST'AS = A and T AT = A.

= At = (TS HAST ) = (ST H"HAST).

Therefore, A and A* similar.



4.

(=)
R[\]-module R™ determind by A is cyclic & R" = %
1 0

~ (M — A?)

0 d

= det(\ — Alis d.
=-The minimal polynomial of A =d

(<)
Suppose it is not cyclic.
1 0
Then (M — A') ~ . 1
dy
0 ds

det(\ — AY) =dy - - d,
The minimal polynomial is d.

5.
0 1 0 0 1
0 1 10 0
A= 0 1 s 1 0
1
1 0 0 1 0
1 0
(N — A?) =
1
0 NP —1

,8 > 1.



11 0 1 0
11 11
B = 1 1 =7 1 1 Sfl.
1 ' 1
0 1 0 11
1 0
(M — BY) =
1
0 (A—1)P

Since (AW —1) = (A—1)?, A= B.
6.
First, we have to know that A and B are similar iff J4=Jp.
(=)
Since, A and B similar, 3C is invertible, such that CAC~! = B.
Moreover, 3 P and @ are invertible, such that PAP~! = J,, QBQ~! = Jp.
So, P*(al, — A)*(P~YH* = (al,, — Ja)¥,Q%(al, — B)*(Q~1)* = (al,, — Jp)*
Thus, rank(al, — A)* = rank(al, —Ja)* = rank(al,,—Jg)* = rank(al,, — B).
(<)
Assume A, B have distinct Jordan form.
Then, we have two cases of rank(A — B)* concerning the eigenvalue of B.
(1) is not an eigenvalue of B:

rank(Al — A) = rank(Al — Ja) <n

rank(A — B) = rank(AM — Jg) =n

So, rank(A — A) # rank(A — B) (a contradiction!)
(2)A and B have different Jordan block form corresponding to A :

For rank(M — B)* = n—kt—s, where) is an eigenvalue with ¢ Jordan blocks
of size > k with a in the diagonal and s is the sum of the size of blocks with < k.

Then since A and B have different Jordan block form corresponding to A,
there exists some k such that rank(\ — B)* # rank(A — A)¥ (a contradiction!)

7.



Let A be 2¢ x 2¢ matrix:

0
1

—b

—a

B

(¥ =)

Let f(A\) =X +a\+b

Then
(1)
f(B) = O : A\l — B! is equivalent to ( (1) _f0</\)

f(N\)is characteristic polynomial of B.
Suppose f(A) = (A —a)(A— ) for o, 5 € C.
Then we have three cases to discuss:

casel:
a=p€R

B is similar to

= Q

= o

case2:
a#PBER

B is similar to

o e
o]

case3_:
a=0€eC#R

B is similar to

= o
N———

Q@
0

)




In any cases f(B) = O.
This is another way to prove Caley-Hamilton Theorem.

(2)

Matrices multiplication can be in block form product.

(3)
0 0 0O 0 0 0 0 0 0 0 0
a 0 0 O a 0 0 0 | 0 0 0O
0 b 0O 0 000 ] |a 0 00O
0 0 ¢c O 0 bc 0 O 0 bc 0 O

If a,b, ¢ # 0 invertible, then ab, bc # 0.
So, by (1)(2)(3), we have the following results:
(1)A has minimal polynomial (f(\))*.

(2)(f(\))* is the characteristic polynomial.

(3) M — At is equivalent to



