1(a).
Since $Q=\left(\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -(\lambda-1) \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & (\lambda-2)^{2}\end{array}\right)$
$P=\left(\begin{array}{cccc}0 & 1 & -(\lambda-3) & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & -(\lambda-3)^{2} & (\lambda-3)^{2} & 1\end{array}\right)$
Then $P\left(\lambda I-A^{t}\right) Q=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \lambda-2 & 0 \\ 0 & 0 & 0 & (\lambda-2)^{2}(\lambda-3)\end{array}\right)$
Hence $\Lambda=\left(\begin{array}{cccc}2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 12 \\ 0 & 1 & 0 & -16 \\ 0 & 0 & 1 & 7\end{array}\right)$

Now, we want to find S .
First, $Q^{-1}=\left(\begin{array}{cccc}1 & 0 & -(\lambda-2)^{2} & 1 \\ 0 & 1 & (\lambda-1) & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$.
Then $\left(\begin{array}{c}v_{1} \\ v_{2} \\ z_{1} \\ z_{2}\end{array}\right)=Q^{-1}\left(\begin{array}{c}u_{1} \\ u_{2} \\ u_{3} \\ u_{4}\end{array}\right)=\left(\begin{array}{c}u_{1}-(\lambda-2)^{2} u_{3}+u_{4} \\ u_{2}+(\lambda-2)^{2} v_{3} \\ u_{1} \\ u_{3}\end{array}\right) \in R[\lambda]^{4}$

This implies

$$
\begin{aligned}
& \eta\left(z_{1}\right)=\eta\left(u_{1}\right)=e_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \\
& \eta\left(z_{2}\right)=\eta\left(u_{3}\right)=e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \lambda \eta\left(z_{2}\right)=A\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right) \\
& \lambda^{2} \eta\left(z_{2}\right)=A^{2}\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-4 \\
0 \\
1
\end{array}\right) . \\
& \text { So, } S=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & -1 & -4 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \Longrightarrow S^{-1} A S=\Lambda
\end{aligned}
$$

1(b).

$$
\begin{aligned}
& \text { By (a), we get } \eta\left(z_{1}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \eta\left(z_{2}\right)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) . \\
& \text { Moreover, }(A-2 I) \eta\left(z_{1}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

So, $A\left(\eta\left(z_{1}\right)\right)=2\left(\eta\left(z_{1}\right)\right)$.

$$
\text { And } \left.(A-2 I)[(A-3 I)] \eta\left(z_{2}\right)\right]=(A-2 I)\left(\begin{array}{c}
0 \\
-1 \\
-2 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

So, $\left.\left.A[(A-3 I)] \eta\left(z_{2}\right)\right]=2[(A-3 I)] \eta\left(z_{2}\right)\right]$.

$$
\Rightarrow(A-2 I)\left[(A-2 I)(A-3 I) \eta\left(z_{2}\right)\right]=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

However, this also implies

$$
\begin{aligned}
& (A-3 I)\left[(A-2 I)(A-2 I) \eta\left(z_{2}\right)\right]=(A-3 I)\left[(A-2 I)^{2} \eta\left(z_{2}\right)\right]=(A-3 I)\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)= \\
& \left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& \text { Thus, we get } U=\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & -1 & 1 & 0 \\
0 & -2 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \text { and } J=\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right) .
\end{aligned}
$$

2.

(\Rightarrow)
A and B are similar
$\Rightarrow \exists S \in R^{n \times n}$ invertible, s.t $B=S^{-1} A S$
$\Rightarrow \lambda I-B=\lambda S^{-1} S-S^{-1} A S=S^{-1}(\lambda S)-S^{-1}(A S)=S^{-1}(\lambda I-A) S$
Since S and S^{-1} are invertible, $\lambda I-A$ and $\lambda I-B$ are equivalent.
(\Leftarrow)
$\lambda I-A$ and $\lambda I-B$ are equivalent
$\Rightarrow \exists P, Q \in R^{n \times n}$ invertible, such that $\lambda I-B=P(\lambda I-A) Q$
$\Rightarrow \lambda I-B^{t}=(\lambda I-B)^{t}=(P(\lambda I-A) Q)^{t}=Q^{t}(\lambda I-A)^{t} P^{t}$
$\Rightarrow \lambda I-A^{t}$ and $\lambda I-B^{t}$ are equivalent
$\Rightarrow \lambda I-A^{t}$ and $\lambda I-B^{t}$ has the same Smith normal form $\operatorname{diag}\left(d_{1}(\lambda), \ldots d_{n}(\lambda)\right)$
$\Rightarrow \exists S, T \in R^{n \times n}$ invertible, s.t $S^{-1} A S=\Lambda$ and $T^{-1} B T=\Lambda$
$\Rightarrow B=T S^{-1} A S T^{-1}=\left(S T^{-1}\right)^{-1} A\left(S T^{-1}\right)$
$\Rightarrow A, B$ are similar.
3.

Let the matrix be A
$P\left(\lambda I-A^{t}\right) Q=D$
$Q^{t}(\lambda I-A)^{t} P^{t}=D^{t}=D$
Therefore, $\left(\lambda I-A^{t}\right)$ and $(\lambda I-A)$ has the same SNF.
$\Rightarrow\left(\lambda I-A^{t}\right)$ and $(\lambda I-A)$ have the same rational canonical form.
Then $\exists S, T$ s.t $S^{-1} A S=\Lambda$ and $T^{-1} A^{t} T=\Lambda$.
$\Rightarrow A^{t}=\left(T S^{-1}\right) A\left(S T^{-1}\right)=\left(\left(S T^{-1}\right)^{-1}\right) A\left(S T^{-1}\right)$.
Therefore, A and A^{t} similar.
4.
(\Rightarrow)
$R[\lambda]$-module R^{n} determind by A is cyclic $\Leftrightarrow R^{n} \cong \frac{D}{(d)}$
$\left(\begin{array}{llll}1 & & & 0 \\ & \ddots & & \\ & & 1 & \\ 0 & & d\end{array}\right) \approx\left(\lambda I-A^{t}\right)$
$\Rightarrow \operatorname{det}\left(\lambda I-A^{t}\right.$ is d.
\Rightarrow The minimal polynomial of $A=d$
(\Leftarrow)
Suppose it is not cyclic.
Then $\left(\lambda I-A^{t}\right) \approx\left(\begin{array}{ccccccc}1 & & & & & & 0 \\ & \ddots & & & & & \\ & & \ddots & & & & \\ & & & 1 & & & \\ & & & & d_{1} & & \\ & & & & & \ddots & \\ 0 & & & & & & d_{s}\end{array}\right), s>1$.
$\operatorname{det}\left(\lambda I-A^{t}\right)=d_{1} \cdots d_{s}$
The minimal polynomial is d_{s}.
5.
$A=\left(\begin{array}{ccccc}0 & 1 & & & \\ & 0 & 1 & & \\ & & 0 & 1 & \\ & & & \ddots & 1 \\ 1 & & & & 0\end{array}\right)=S\left(\begin{array}{ccccc}0 & & & 0 & 1 \\ 1 & 0 & & & 0 \\ & 1 & 0 & & \\ & & \ddots & \ddots & \\ 0 & & & 1 & 0\end{array}\right) S^{-1}$.
$\left(\lambda I-A^{t}\right) \cong\left(\begin{array}{cccc}1 & & & 0 \\ & \ddots & & \\ & & 1 & \\ 0 & & & \lambda^{p}-1\end{array}\right)$
$B=\left(\begin{array}{ccccc}1 & 1 & & & 0 \\ & 1 & 1 & & \\ & & 1 & 1 & \\ & & & \ddots & 1 \\ 0 & & & & 1\end{array}\right)=T\left(\begin{array}{ccccc}1 & & & & 0 \\ 1 & 1 & & & \\ & 1 & 1 & & \\ & & \ddots & 1 & \\ 0 & & & 1 & 1\end{array}\right) S^{-1}$.
$\left(\lambda I-B^{t}\right) \cong\left(\begin{array}{cccc}1 & & & 0 \\ & \ddots & & \\ & & 1 & \\ 0 & & & (\lambda-1)^{p}\end{array}\right)$
Since $\left(\lambda^{p}-1\right)=(\lambda-1)^{p}, A \approx B$.
6.

First, we have to know that A and B are similar iff $J_{A}=J_{B}$.
(\Rightarrow)
Since, A and B similar, $\exists C$ is invertible, such that $C A C^{-1}=B$.
Moreover, $\exists P$ and Q are invertible, such that $P A P^{-1}=J_{A}, Q B Q^{-1}=J_{B}$.
So, $P^{k}\left(a I_{n}-A\right)^{k}\left(P^{-1}\right)^{k}=\left(a I_{n}-J_{A}\right)^{k}, Q^{k}\left(a I_{n}-B\right)^{k}\left(Q^{-1}\right)^{k}=\left(a I_{n}-J_{B}\right)^{k}$
Thus, $\operatorname{rank}\left(a I_{n}-A\right)^{k}=\operatorname{rank}\left(a I_{n}-J_{A}\right)^{k}=\operatorname{rank}\left(a I_{n}-J_{B}\right)^{k}=\operatorname{rank}\left(a I_{n}-B\right)^{k}$.
(\Leftarrow)
Assume A, B have distinct Jordan form.
Then, we have two cases of $\operatorname{rank}(\lambda I-B)^{k}$ concerning the eigenvalue of B.
(1) λ is not an eigenvalue of B :

$$
\begin{aligned}
& \operatorname{rank}(\lambda I-A)=\operatorname{rank}\left(\lambda I-J_{A}\right)<n \\
& \operatorname{rank}(\lambda I-B)=\operatorname{rank}\left(\lambda I-J_{B}\right)=n
\end{aligned}
$$

So, $\operatorname{rank}(\lambda I-A) \neq \operatorname{rank}(\lambda I-B)$ (a contradiction!)
(2) A and B have different Jordan block form corresponding to λ :

For $\operatorname{rank}(\lambda I-B)^{k}=n-k t-s$, where λ is an eigenvalue with t Jordan blocks of size $\geq k$ with a in the diagonal and s is the sum of the size of blocks with $<k$.

Then since A and B have different Jordan block form corresponding to λ, there exists some k such that $\operatorname{rank}(\lambda I-B)^{k} \neq \operatorname{rank}(\lambda I-A)^{k}$ (a contradiction!)
7.

Let A be $2 \ell \times 2 \ell$ matrix:

$B=\left(\begin{array}{cc}0 & -b \\ 1 & -a\end{array}\right)$

Let $f(\lambda)=\lambda^{2}+a \lambda+b$

Then
(1)
$f(B)=O: \lambda I-B^{t}$ is equivalent to $\left(\begin{array}{cc}1 & 0 \\ 0 & -f(\lambda)\end{array}\right)$
$f(\lambda)$ is characteristic polynomial of B.
Suppose $f(\lambda)=(\lambda-\alpha)(\lambda-\beta)$ for $\alpha, \beta \in C$.
Then we have three cases to discuss:
case1:
$\alpha=\beta \in R$
B is similar to $\left(\begin{array}{cc}\alpha & 0 \\ 1 & \beta\end{array}\right)$
case2:
$\alpha \neq \beta \in R$
B is similar to $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$
case3:
$\alpha=\bar{\beta} \in C \neq R$
B is similar to $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$

In any cases $f(B)=O$.
This is another way to prove Caley-Hamilton Theorem.
(2)

Matrices multiplication can be in block form product.
(3)

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & b c & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
a b & 0 & 0 & 0 \\
0 & b c & 0 & 0
\end{array}\right)
$$

If $a, b, c \neq 0$ invertible, then $a b, b c \neq 0$.
So, by (1)(2)(3), we have the following results:
(1) A has minimal polynomial $(f(\lambda))^{\ell}$.
$(2)(f(\lambda))^{\ell}$ is the characteristic polynomial.
(3) $\lambda I-A^{t}$ is equivalent to $\left(\begin{array}{cccc}1 & & & \\ & 1 & & \\ & & 1 & \\ & & & (f(\lambda))^{\ell}\end{array}\right)$

