1(a).

Since
$$Q = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -(\lambda - 1) \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & (\lambda - 2)^2 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 1 & -(\lambda - 3) & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & -(\lambda - 3)^2 & (\lambda - 3)^2 & 1 \end{pmatrix}$$
Then $P(\lambda I - A^t)Q = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \lambda - 2 & 0 \\ 0 & 0 & 0 & (\lambda - 2)^2(\lambda - 3) \end{pmatrix}$
Hence $\Lambda = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 12 \\ 0 & 1 & 0 & -16 \\ 0 & 0 & 1 & 7 \end{pmatrix}$

Now, we want to find S.

First,
$$Q^{-1} = \begin{pmatrix} 1 & 0 & -(\lambda - 2)^2 & 1 \\ 0 & 1 & (\lambda - 1) & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
.
Then $\begin{pmatrix} v_1 \\ v_2 \\ z_1 \\ z_2 \end{pmatrix} = Q^{-1} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} = \begin{pmatrix} u_1 - (\lambda - 2)^2 u_3 + u_4 \\ u_2 + (\lambda - 2)^2 v_3 \\ u_1 \\ u_3 \end{pmatrix} \in R[\lambda]^4$

This implies

$$\eta(z_1) = \eta(u_1) = e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\eta(z_2) = \eta(u_3) = e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\lambda \eta(z_2) = A \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}$$
$$\lambda^2 \eta(z_2) = A^2 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ -4 \\ 0 \\ 1 \end{pmatrix}.$$
So, $S = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & -1 & -4 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
$$\implies S^{-1}AS = \Lambda$$

1(b).

By (a), we get
$$\eta(z_1) = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \eta(z_2) = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}$$
.
Moreover, $(A - 2I)\eta(z_1) = \begin{pmatrix} 0\\0\\0\\0\\0 \end{pmatrix}$ So, $A(\eta(z_1)) = 2(\eta(z_1))$.

And
$$(A - 2I)[(A - 3I)]\eta(z_2)] = (A - 2I) \begin{pmatrix} 0 \\ -1 \\ -2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

So, $A[(A - 3I)]\eta(z_2)] = 2[(A - 3I)]\eta(z_2)].$
$$\Rightarrow (A - 2I)[(A - 2I)(A - 3I)\eta(z_2)] = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

However, this also implies

$$(A-3I)[(A-2I)(A-2I)\eta(z_2)] = (A-3I)[(A-2I)^2\eta(z_2)] = (A-3I)\begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}$$

Thus, we get $U = \begin{pmatrix} 1 & 0 & 1 & 1\\0 & -1 & 1 & 0\\0 & -2 & 1 & 0\\0 & 0 & 1 & 1 \end{pmatrix}$ and $J = \begin{pmatrix} 2 & 0 & 0 & 0\\0 & 2 & 0 & 0\\0 & 1 & 2 & 0\\0 & 0 & 0 & 3 \end{pmatrix}$.

2.

 (\Rightarrow) A and b

 $\begin{array}{l} A \mbox{ and } B \mbox{ are similar} \\ \Rightarrow \exists S \in R^{n \times n} \mbox{ invertible, s.t } B = S^{-1}AS \\ \Rightarrow \lambda I - B = \lambda S^{-1}S - S^{-1}AS = S^{-1}(\lambda S) - S^{-1}(AS) = S^{-1}(\lambda I - A)S \\ \mbox{Since } S \mbox{ and } S^{-1} \mbox{ are invertible, } \lambda I - A \mbox{ and } \lambda I - B \mbox{ are equivalent.} \end{array}$

 $\begin{aligned} &(\Leftarrow) \\ \lambda I - A \text{ and } \lambda I - B \text{ are equivalent} \\ &\Rightarrow \exists P, Q \in R^{n \times n} \text{ invertible, such that } \lambda I - B = P(\lambda I - A)Q \\ &\Rightarrow \lambda I - B^t = (\lambda I - B)^t = (P(\lambda I - A)Q)^t = Q^t(\lambda I - A)^t P^t \\ &\Rightarrow \lambda I - A^t \text{ and } \lambda I - B^t \text{ are equivalent} \\ &\Rightarrow \lambda I - A^t \text{ and } \lambda I - B^t \text{ has the same Smith normal form } diag(d_1(\lambda), \dots d_n(\lambda)) \\ &\Rightarrow \exists S, T \in R^{n \times n} \text{ invertible, s.t } S^{-1}AS = \Lambda \text{ and } T^{-1}BT = \Lambda \\ &\Rightarrow B = TS^{-1}AST^{-1} = (ST^{-1})^{-1}A(ST^{-1}) \\ &\Rightarrow A, B \text{ are similar.} \end{aligned}$

3.

Let the matrix be A $P(\lambda I - A^t)Q = D$ $Q^t(\lambda I - A)^t P^t = D^t = D$ Therefore, $(\lambda I - A^t)$ and $(\lambda I - A)$ has the same SNF. $\Rightarrow (\lambda I - A^t)$ and $(\lambda I - A)$ have the same rational canonical form. Then $\exists S, T \text{ s.t } S^{-1}AS = \Lambda$ and $T^{-1}A^tT = \Lambda$. $\Rightarrow A^t = (TS^{-1})A(ST^{-1}) = ((ST^{-1})^{-1})A(ST^{-1})$. Therefore, A and A^t similar. $\Rightarrow det(\lambda I - A^t is d.$ \Rightarrow The minimal polynomial of A = d

(⇐) Suppose it is not cyclic.

Then
$$(\lambda I - A^t) \approx \begin{pmatrix} 1 & & & & 0 \\ & \ddots & & & & \\ & & \ddots & & & \\ & & & 1 & & \\ & & & & d_1 & \\ & & & & & \ddots & \\ 0 & & & & & d_s \end{pmatrix}, s > 1.$$

$$det(\lambda I - A^t) = d_1 \cdots d_s$$

The minimal polynomial is d_s .

5.

$$\begin{split} A &= \begin{pmatrix} 0 & 1 & & \\ & 0 & 1 & & \\ & & 0 & 1 & \\ & & & \ddots & 1 \\ 1 & & & 0 \end{pmatrix} = S \begin{pmatrix} 0 & & 0 & 1 \\ 1 & 0 & & 0 \\ & 1 & 0 & & \\ & & \ddots & \ddots & \\ 0 & & & 1 & 0 \end{pmatrix} S^{-1}. \\ (\lambda I - A^t) &\cong \begin{pmatrix} 1 & & 0 & \\ & \ddots & & \\ & & 1 & \\ 0 & & \lambda^p - 1 \end{pmatrix} \end{split}$$

4.

$$B = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & \\ & 1 & 1 & \\ & & \ddots & 1 \\ 0 & & & 1 \end{pmatrix} = T \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 & \\ & 1 & 1 & \\ & & \ddots & 1 & \\ 0 & & & 1 & 1 \end{pmatrix} S^{-1}.$$
$$(\lambda I - B^t) \cong \begin{pmatrix} 1 & 0 & \\ & \ddots & \\ & 1 & \\ 0 & & (\lambda - 1)^p \end{pmatrix}$$

Since $(\lambda^p - 1) = (\lambda - 1)^p, A \approx B.$

6.

First, we have to know that A and B are similar iff $J_A = J_B$.

(\Rightarrow)

Since, A and B similar, $\exists C$ is invertible, such that $CAC^{-1} = B$. Moreover, $\exists P$ and Q are invertible, such that $PAP^{-1} = J_A$, $QBQ^{-1} = J_B$. So, $P^k(aI_n - A)^k(P^{-1})^k = (aI_n - J_A)^k$, $Q^k(aI_n - B)^k(Q^{-1})^k = (aI_n - J_B)^k$. Thus, $rank(aI_n - A)^k = rank(aI_n - J_A)^k = rank(aI_n - J_B)^k = rank(aI_n - B)^k$.

(⇐)

Assume A, B have distinct Jordan form. Then, we have two cases of $rank(\lambda I - B)^k$ concerning the eigenvalue of B.

 $(1)\lambda$ is not an eigenvalue of B:

$$rank(\lambda I - A) = rank(\lambda I - J_A) < n$$

 $rank(\lambda I - B) = rank(\lambda I - J_B) = n$

So, $rank(\lambda I - A) \neq rank(\lambda I - B)$ (a contradiction!)

(2) A and B have different Jordan block form corresponding to λ :

For $rank(\lambda I - B)^k = n - kt - s$, where λ is an eigenvalue with t Jordan blocks of size $\geq k$ with a in the diagonal and s is the sum of the size of blocks with < k.

Then since A and B have different Jordan block form corresponding to λ , there exists some k such that $rank(\lambda I - B)^k \neq rank(\lambda I - A)^k$ (a contradiction!)

7.

Let A be $2\ell \times 2\ell$ matrix:

$$A = \begin{pmatrix} \begin{bmatrix} 0 & -b \\ 1 & -a \end{bmatrix} & & & & 0 \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \begin{bmatrix} 0 & -b \\ 1 & -a \end{bmatrix} & & & & \\ & & & \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \begin{bmatrix} 0 & -b \\ 1 & -a \end{bmatrix} & & \\ & & & & \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \begin{bmatrix} 0 & -b \\ 1 & -a \end{bmatrix} & \\ & & & & \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \begin{bmatrix} 0 & -b \\ 1 & -a \end{bmatrix} & \\ & & & & \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \begin{bmatrix} 0 & -b \\ 1 & -a \end{bmatrix} & \\ & & & & \end{bmatrix} \\ B = \begin{pmatrix} 0 & -b \\ 1 & -a \end{pmatrix}$$

Let $f(\lambda) = \lambda^2 + a\lambda + b$

Then

(1) $f(B) = O : \lambda I - B^{t} \text{ is equivalent to} \begin{pmatrix} 1 & 0 \\ 0 & -f(\lambda) \end{pmatrix}$ $f(\lambda) \text{ is characteristic polynomial of } B.$

Suppose $f(\lambda) = (\lambda - \alpha)(\lambda - \beta)$ for $\alpha, \beta \in C$.

Then we have three cases to discuss:

case1: $\alpha = \beta \in R$ B is similar to $\begin{pmatrix} \alpha & 0 \\ 1 & \beta \end{pmatrix}$ case2: $\alpha \neq \beta \in R$ B is similar to $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ case3: $\alpha = \overline{\beta} \in C \neq R$ B is similar to $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ In any cases f(B) = O. This is another way to prove Caley-Hamilton Theorem.

(2)

Matrices multiplication can be in block form product.

(3)													
(0	0	0	0	$\setminus /$	0	0	0	0)		(0	0	0	0
a	0	0	0	$\left \right $	a	0	0	0		0	0	0	0
0	b	0	0		0	0	0	0	=	ab	0	0	0
(0	0	С	0	$) \setminus$	0	bc	0	0 /		0	bc	0	0 /
If $a, b, c \neq 0$ invertible, then $ab, bc \neq 0$.													

So, by (1)(2)(3), we have the following results:

(1)A has minimal polynomial $(f(\lambda))^{\ell}$.

 $(2)(f(\lambda))^{\ell}$ is the characteristic polynomial.

(3)
$$\lambda I - A^t$$
 is equivalent to $\begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 & \\ & & & (f(\lambda))^\ell \end{pmatrix}$