1.2 Homomorphism and Subgroups

Definition. Let G and H be semigroups. A function $f : G \mapsto H$ is a homomorphism if f(ab) = f(a)f(b) for $a, b \in G$.

Note.

We always write G as a group.

Definition. $H \subseteq G$ is a subgroup of G if H is a group under the same operation of G.

Example. $2\mathbb{Z}$ is a subgroup of \mathbb{Z} under +.

Note. We write H < G if H is a subgroup of G.

Theorem. $H < G \Leftrightarrow \phi \neq H \subseteq G$ and $ab^{-1} \in H$ for $a, b \in H$

Proof. • (\Rightarrow) Clear.

• (\Leftarrow) We need to check H is a group:

- 1. Associate to check H is a group.
- 2. Pick $h \in H$.
- 3. For any $a \in H, a^{-1} = ea^{-1} \in H$.
- 4. For $a, b \in H, ab = a(b^{-1})^{-1}.\square$

Theorem. $f: G \mapsto H$ is a group homomorphism. \Rightarrow The kernal of $f, Kerf := \{g \in G | f(g) = e\}$, is a subgroup of G.

Proof. Note: f(e) = f(ee) = f(e)f(e)Hence f(e) is the identity in H. That is $Kerf \neq \phi$ Also $f(b)f(b^{-1}) = f(bb^{-1}) = f(e)$ By uniqueness of $f(b)^{-1}$. we find $f(b^{-1}) = f(b)^{-1}$ for any $a, b \in Kerf$. we have $f(ab^{-1}) = f(a)f(b^{-1})$ is the identity in H. Thus $ab^{-1} \in Kerf$. Hence Kerf is a subgroup of G by previous theorem.

Note. 1. f(G) is a subgroup of H.

- 2. The center Z(G) of G is a subgroup of G, where $Z(G) := \{g \in G | gh = hg \text{ for } h \in G\}$.
- 3. Fix $a \in G$. The centralizer $C_G(a)$ of G is a subgroup of G, where $C_G(a) := \{g \in G | ga = ag\}$ $Z(G) := \bigcap_{a \in G} C_G(a).\square$

Definition. Fix $X \subseteq G$. Let $\langle X \rangle$ be the intersection of all subgroups contain X. $\langle X \rangle$ is called the subgroup of G generated by X.

Theorem. Fix $X \subseteq G$. Then $\langle X \rangle = \{a_1^{n_1} a_2^{n_2} \cdots a_t^{n_t} | a_i \in X, n_i \in \mathbb{Z}\}$

Proof. (\subseteq) This is clear since RHS is a subgroup containing X. (Note $(a_1^{n_1}a_2^{n_2}\cdots a_t^{n_t})^{-1} = a_t^{-n_t}a_{t-1}^{-n_{t-1}}\cdots a_1^{-n_1})$

 (\supseteq) This is clear. Since such $a_1^{n_1}a_2^{n_2}\cdots a_t^{n_t}$ is contained in each subgroup of G contain $X.\Box$

Example. $X = \{0, 2\} \subseteq \mathbb{Z}$. X does not generate a group under multiplication.

Example. If X is a set of invertible elements, then X generates a group. In fact, this group is $\langle X \rangle = \{a_1^{n_1} a_2^{n_2} \cdots a_t^{n_t} | a_i \in X \text{ and } n_i \in \mathbb{Z}\}.$