1.3 Cyclic groups

Definition 1 *G* is cyclic if $G = \langle a \rangle$ for some $a \in G$.

ex. $Z = \langle 1 \rangle = \langle -1 \rangle$ under +.

Theorem 1 Let G be a cyclic group. Then G is isomorphic to Z or Z_n for some $n \in N$, under addition. Proof. Suppose $G = \langle a \rangle = \{a^i | i \in Z\}$, for some $a \in G$. Define $f: Z \to G$ by $f(i) = a^i$ f is clear to be an epimorphism. If f is isomorphism, then G is isomorphic to Z. Suppose f is not isomorphism: Let n be the least integer n = j - i such that j > i and $a^j = a^i$ Note $G = \{a^0, a^1, \dots, a^{n-1}\}$ and |G| = n. Hence G is isomorphic to Z_n .