Def ：Suppose $\mathrm{H}<\mathrm{G} . G / H:=\{H g \mid g \in G\}$（a set of sets）is the set of right cosets of H in G．

Theorem ：Suppose $\mathrm{H}<\mathrm{G}$ ．Then
（1） $\mathrm{Hh}=\mathrm{H}$ for $h \in H$
（2）If $|H|<\infty$ then $|H g|=|H|$ for any $g \in G$ ．
（3）$H g=H g^{\prime} \Leftrightarrow g^{\prime} g^{-1} \in H \quad$ for any $g, g^{\prime} \in G$
（4）$H g=H g^{\prime}$ or $H g \bigcap H g^{\prime}=\phi$

Pf ：（1）（ \subseteq ）Clear．
（ొ）Pick $a \in H$ ．Then $a h^{-1} \in H$ ．Hence $a \in H h$ ．
（2）Define $f: H g \rightarrow H$ by $f(a \cdot g)=a$ for $a \in H$ ．Check f is well－defined，1－1，onto．
（3）(\Rightarrow) Clear．
(\Leftarrow) Suppose $g^{\prime} g^{-1} \in H$ ，say $g^{\prime} g^{-1}=h \in H$
Then $H g=H h g=H g^{\prime}$ ．
（4）Suppose $H g \neq H g^{\prime}$ and $H g \cap H g^{\prime} \neq \phi$ ．
Then $g g^{\prime} g^{-1} \notin H$ by（3）and $h g=h^{\prime} g^{\prime}$ for some $h, h^{\prime} \in H$ Hence $g^{\prime} g^{-1}=\left(h^{\prime}\right)^{-1} h \in H$ ．

Recall： $\mathrm{H}<\mathrm{G}$ ，then
（1） Ha is called a right coset of H in G ，for $a \in G$ ．
（2）$|H|=|H a|$ if $|G|<\infty$ ．
（3）$H a=H b$ or $H a \cap H b=\phi$ for $a, b \in G$

Def ：For $\mathrm{H}<\mathrm{G}$ ，let $[G: H$ ］denote the of right cosets of H in $\mathrm{G} .[G: H$ ］is called the index of H in G ．

Cor ：（Lagrange Theorem）$\quad|G|<\infty \Rightarrow[G: H]=|G| /|H|$ ．In particular，$|H||G|$ ．

Theorem: $\mathrm{H}, \mathrm{K}<\mathrm{G}$ and $|G|<\infty \Rightarrow|H K|=|H \| K| /|H \cap K|$

Pf: $K=(H \cap K) t_{1} \cup(H \cap K) t_{2} \cup \cdots \cup(H \cap K) t_{s} \quad(\cup$ means disjoint union) for some $t_{i} \in K$.
Then $H K=H(H \cap K) t_{1} \cup H(H \cap K) t_{2} \cup \cdots \cup H(H \cap K) t_{s}$ $=H t_{1} \cup H t_{2} \cup \cdots \cup H t_{s}$.

Note $H t_{i} \cap H t_{j}=\phi$ or $H t_{i}=H t_{j}$.
Suppose $H t_{i}=H t_{j}$.
Then $t_{j} t_{i}^{-1} \in H \cap K$. Thus $(H \cap K) t_{j}=(H \cap K) t_{i}$ i.e. $i=j$
Hence $|H K|=|H| \cdot s=|H| \cdot|K| / H \cap K \mid$

Note: $H K \subseteq<H, K><G$

