1.5 Normality, Quotient Groups and Homomorphisms Theorem: suppose N < GTFAE (1)gN = Ng for all $g \in G$ $(2)g^{-1}Ng = N$ for all $g \in G$ $(3)g^{-1}Ng$ for all $g \subseteq G$ If (1) \Rightarrow (3)holds, we say N is normal in G and denoted by $N \triangleleft G$ pf: $(2) \Rightarrow (3)$ clear $(3) \Rightarrow (1)gN = gNg^{-1} \subseteq Ng$ similarly $Ng \subseteq gN$ $(1) \Rightarrow (2)g^{-1}Ng = g^{-1}gN = N$ Theorem: $H < G, N \lhd G \Rightarrow HN = NH < G$ PF: $(1)hn = hnh^{-1} \in NH$ for $h \in H$ and $n \in H$. This proves $HN \subseteq NH$, similarly $NH \subseteq HN$ (2) pick $hn, h'n' \in HN$. Then $(hn)(h'n')^{-1} = hnn'^{-1}h'^{-1} = hn'^{-1}n'nh'^{-1}h'n'^{-1}h'^{-1} \in HN$. HN. Hence HN < GTheorem: $N \triangleleft G$. Define a product \circ on G/N by $Na \circ Nb = Nab$ for $a, b \in G$. Then G/Nis a group under this product and e = N. G/N is called the quotient of N by G. pf: We need to show the product is well-defined. Suppose Na = Na' and Nb = Nb'for $a, b, a', b' \in G$. (claim: Nab = Na'b') Then $a'a^{-1} \in N$ and $b'b^{-1} \in N$. So, $a'a^{-1}ab'b^{-1}a^{-1} \in N$. Thus $a'b'b^{-1}a^{-1} =$ $a'b'(ab)^{-1} \in N$. Hence Nab = Na'b'. The remaining is clear. Theorem: (First Fundamented Tehorem of Homomorphism) Let $f: G \to H$ be a homomorphism of groups then $kerf \triangleleft G$ and f(G) is isomorphic to G/kerf. pf: $(1)f(g^{-1}(kerf)g) = f(g)^{-1}\{e\}f(g) = \{e\}$. i.e. $g^{-1}(kerf)g \subseteq kerf$ for $g \in G$.

This proves $kerf \triangleleft G$.

(2)Define a map $\tilde{f}: G/kerf \to f(G)$ by $\tilde{f}((kerf)g) = f(g)$ for $g \in G$. It is routine to check \tilde{f} is well-defined, homomorphism, 1-1, and onto.