1.6 Symmetric, Alternating and Dihedreal Groups

For $\{i_1, i_2, \cdots, i_r\} \subseteq \{1, 2, \cdots, n\}$, we use (i_1, i_2, \cdots, i_r) to denote the permutation $\begin{pmatrix} 1 & 2 & \cdots & i_j & \cdots & a & \cdots & n \\ 1 & 2 & \cdots & i_{j+1} & \cdots & a & \cdots & n \end{pmatrix}$, where $a \notin \{i_1, i_2, \cdots, i_r\}$ and j+1 is modulo r.

Example 1. (1,2,3,4) represents $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & \cdots & n \\ 2 & 3 & 4 & 1 & 5 & 6 & \cdots & n \end{pmatrix}$.

Example 2.

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}$$
$$= (1,2)(3,4) \quad disjoint \ cycles$$
$$= (3,4)(1,2)$$

 (i_1, i_2, \dots, i_r) is called a cycle of length r. If r=2, it is called a transposition.

Note: Disjoint cycles commute.

Theorem 1. Every permutation in S_n can be written as a product of disjoint cycles uniquely up to the order of cycles.

Example 3.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 2 & 4 & 6 & 7 & 8 & 5 & 9 \end{pmatrix}$$

= (1,3,2)(4)(5,6,7,8)(9)
= (1,3,2)(5,6,7,8)

Proof. For each $\sigma \in S_n$, σ gives a directed graph on $\{1, 2, \dots, n\}$ with arc $i \to \sigma(i)$. This digraph has "indegree" 1 since σ is 1 - 1 and $n < \infty$. It has "outdegree" 1 since σ is a function. Hence, the directed graph is a disjoint union of directed cycles.

Definition 1. S_n is called the symmetric group on $\{1, 2, \dots, n\}$.

Example 4.

$$(123456) = (16)(15)(14)(13)(12) = (12)(23)(34)(56)(56)$$

Theorem 2. No permutation $\sigma \in S_n$ can be written as a product of odd number of transpositions and as a product of even number of transpositions.

Proof. Consider $f(x_1, \cdots, x_n) := \prod_{1 \le i < j \le n} (x_i - x_j).$

For $\sigma \in S_n$, define

$$\sigma f(x_1, x_2, \cdots, x_n) = f(x_{\sigma(1)}, x_{\sigma(2)}, \cdots, x_{\sigma(n)})$$
$$= \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)})$$

Observe

(0) $\sigma f = \pm f$ for $\sigma \in S_n$.

(1) $(\sigma\tau)f = \sigma(\tau f)$ for $\sigma, \tau \in S_n$.

(2) $(a_1, a_2)f = -f$ for $(a_1, a_2) \in S_n$.

(Taking all possible situations for i, j given a_1 and a_2 . The detail can be found in the textbook.)

(3) $(a_1, b_1)(a_2, b_2) \cdots (a_t, b_t) f = (-1)^t f$. The theorem follows form (3).