1.6 Symmetric, Alternating and Dihedreal Groups

For $\left\{i_{1}, i_{2}, \cdots, i_{r}\right\} \subseteq\{1,2, \cdots, n\}$, we use $\left(i_{1}, i_{2}, \cdots, i_{r}\right)$ to denote the permutation $\left(\begin{array}{cccccccc}1 & 2 & \cdots & i_{j} & \cdots & a & \cdots & n \\ 1 & 2 & \cdots & i_{j+1} & \cdots & a & \cdots & n\end{array}\right)$, where $a \notin\left\{i_{1}, i_{2}, \cdots, i_{r}\right\}$ and $j+1$ is modulo r.

Example 1. (1,2,3,4) represents $\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & \cdots & n \\ 2 & 3 & 4 & 1 & 5 & 6 & \cdots & n\end{array}\right)$.
Example 2.

$$
\begin{aligned}
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right) & =\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 4 & 3
\end{array}\right) \\
& =(1,2)(3,4) \text { disjoint cycles } \\
& =(3,4)(1,2)
\end{aligned}
$$

$\left(i_{1}, i_{2}, \cdots, i_{r}\right)$ is called a cycle of length r. If $\mathrm{r}=2$, it is called a transposition.

Note: Disjoint cycles commute.
Theorem 1. Every permutation in S_{n} can be written as a product of disjoint cycles uniquely up to the order of cycles.

Example 3.

$$
\begin{aligned}
& \left(\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 1 & 2 & 4 & 6 & 7 & 8 & 5 & 9
\end{array}\right) \\
= & (1,3,2)(4)(5,6,7,8)(9) \\
= & (1,3,2)(5,6,7,8)
\end{aligned}
$$

Proof. For each $\sigma \in S_{n}, \sigma$ gives a directed graph on $\{1,2, \cdots, n\}$ with arc $i \rightarrow \sigma(i)$. This digraph has "indegree" 1 since σ is $1-1$ and $n<\infty$. It has "outdegree" 1 since σ is a function. Hence, the directed graph is a disjoint union of directed cycles.

Definition 1. S_{n} is called the symmetric group on $\{1,2, \cdots, n\}$.

Example 4.

$$
\begin{align*}
& =(16)(15)(14)(13)(12) \tag{123456}\\
& =(12)(23)(34)(56)(56)
\end{align*}
$$

Theorem 2. No permutation $\sigma \in S_{n}$ can be written as a product of odd number of transpositions and as a product of even number of transpositions.

Proof. Consider $f\left(x_{1}, \cdots, x_{n}\right):=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)$.
For $\sigma \in S_{n}$, define

$$
\begin{aligned}
\sigma f\left(x_{1}, x_{2}, \cdots, x_{n}\right) & =f\left(x_{\sigma(1)}, x_{\sigma(2)}, \cdots, x_{\sigma(n)}\right) \\
& =\prod_{1 \leq i<j \leq n}\left(x_{\sigma(i)}-x_{\sigma(j)}\right)
\end{aligned}
$$

Observe
(0) $\sigma f= \pm f$ for $\sigma \in S_{n}$.
(1) $(\sigma \tau) f=\sigma(\tau f)$ for $\sigma, \tau \in S_{n}$.
(2) $\left(a_{1}, a_{2}\right) f=-f$ for $\left(a_{1}, a_{2}\right) \in S_{n}$.
(Taking all possible situations for i, j given a_{1} and a_{2}. The detail can be found in the textbook.)
(3) $\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \cdots\left(a_{t}, b_{t}\right) f=(-1)^{t} f$.

The theorem follows form (3).

