
1.6 Symmetric, Alternating and Dihedreal

Groups

For {i1, i2, · · · , ir} ⊆ {1, 2, · · · , n}, we use (i1, i2, · · · , ir) to denote the

permutation

(

1 2 · · · ij · · · a · · · n
1 2 · · · ij+1 · · · a · · · n

)

, where a /∈ {i1, i2, · · · , ir}

and j + 1 is modulo r.

Example 1. (1,2,3,4) represents

(

1 2 3 4 5 6 · · · n
2 3 4 1 5 6 · · · n

)

.

Example 2.

(

1 2 3 4
2 1 4 3

)

=

(

1 2 3 4
2 1 3 4

) (

1 2 3 4
1 2 4 3

)

= (1, 2)(3, 4) disjoint cycles

= (3, 4)(1, 2)

(i1, i2, · · · , ir) is called a cycle of length r. If r=2, it is called a transpo-
sition.

Note: Disjoint cycles commute.

Theorem 1. Every permutation in Sn can be written as a product of disjoint
cycles uniquely up to the order of cycles.

Example 3.

(

1 2 3 4 5 6 7 8 9
3 1 2 4 6 7 8 5 9

)

= (1, 3, 2)(4)(5, 6, 7, 8)(9)

= (1, 3, 2)(5, 6, 7, 8)
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Proof. For each σ ∈ Sn, σ gives a directed graph on {1, 2, · · · , n} with arc
i → σ(i). This digraph has ”indegree” 1 since σ is 1 − 1 and n < ∞. It has
”outdegree” 1 since σ is a function. Hence, the directed graph is a disjoint
union of directed cycles.

Definition 1. Sn is called the symmetric group on {1, 2, · · · , n}.

Example 4.

(123456)

= (16)(15)(14)(13)(12)

= (12)(23)(34)(56)(56)

Theorem 2. No permutation σ ∈ Sn can be written as a product of odd
number of transpositions and as a product of even number of transpositions.

Proof. Consider f(x1, · · · , xn) :=
∏

1≤i<j≤n

(xi − xj).

For σ ∈ Sn, define

σf(x1, x2, · · · , xn) = f(xσ(1), xσ(2), · · · , xσ(n))

=
∏

1≤i<j≤n

(xσ(i) − xσ(j))

Observe
(0) σf = ±f for σ ∈ Sn.
(1) (στ)f = σ(τf) for σ, τ ∈ Sn.
(2) (a1, a2)f = −f for (a1, a2) ∈ Sn.
(Taking all possible situations for i, j given a1 and a2. The detail can be

found in the textbook.)
(3) (a1, b1)(a2, b2) · · · (at, bt)f = (−1)tf .
The theorem follows form (3).
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