Def: Let A_{n} be the set of even permutations in S_{n}.
Theorem:(1) $A_{n} \triangleleft S_{n}(2)\left[S_{n}: A_{n}\right]=2$ if $n \geq 2$
Prove:
(1) $\sigma^{-1} \tau \epsilon A_{n}$ for all $\sigma, \tau \epsilon A_{n} \Longrightarrow A_{n} \leq S_{n} \sigma^{-1} \tau \sigma \epsilon A_{n}$ if $\sigma \epsilon S_{n}$ and $\tau \epsilon A_{n} \Longrightarrow$ $A_{n} \triangleleft S_{n}$.
(2)Define $f: S_{n} \longrightarrow \mathbb{Z}_{2}$ by

$$
f(\sigma)= \begin{cases}0, & \text { if } \sigma \text { is even } \\ 1, & \text { if } \sigma \text { is odd }\end{cases}
$$

Then f is an epimorphism with kernel A_{n}. By first homomorphism, $S_{n} / A_{n} \cong$ \mathbb{Z}_{2}, hence $\left[S_{n}: A_{n}\right]=2$.

Def: G is simple if g has no normal subgroups except $\{e\}$ and G .
Cor: S_{n} is not simple for $n \geq 2$.
Note: $g(1,2, \ldots, t) g^{-1}=(g(1), g(2), \ldots, g(t))$ for $g \epsilon S_{n}$.
ex: $K_{4}=\{e,(12)(34),(14)(23),(13)(24)\}<A_{4}$.
$g(12)(34) g^{-1}=g(12) g^{-1} g(34) g^{-1}=(g(1) g(2))(g(3) g(4)) \epsilon K_{4}$. Hence $K_{4} \triangleleft$ A_{4}.

Fact: A_{n} is simple if $n \neq 4$.
Def: Fix $n \in \mathbb{N}, \sigma=(1,2,3, \ldots, n), \tau=(2, n)(3, n-1)(4, n-2) \ldots$,
$D_{n}=<\sigma, \tau>$ is called the Dihedral group of rank n.
Notation: $|\sigma|=|<\sigma>|$ for $\sigma \epsilon S_{n}$.
Property:
(1) $|\sigma|=n$
(2) $|\tau|=2$
(3) $\sigma \tau=\tau \sigma^{-1}$
(4) $D_{n}=2 n$

Prove:
(1)(2) are clear.
(3):
$\sigma \tau(1)=2=\tau \sigma^{-1}(1), \sigma \tau(2)=1=\tau \sigma^{-1}(2), \sigma \tau(n)=3=\tau \sigma^{-1}(n)$.

For $3 \leq i \leq n-1, \sigma \tau(i)=\sigma(n+2-i)=n+3-i$ and $\tau \sigma^{-1}(i)=2(i-1)=$ $n+2-(i-1)=n+3-i$. Hence $\sigma \tau=\tau \sigma^{-1}$. (4):
$D_{n}=\left\{\sigma^{i} \tau^{j} \mid 0 \leq i \leq n-1,0 \leq j \leq 1\right\}$ by (3).
If $\sigma^{i} \tau^{j}=\sigma^{k} \tau^{l}$ then $\sigma^{i-k}=\tau^{l-j}=e$ for $0 \leq i, k \leq n-1,0 \leq l, j \leq 1$. Hence $i=k, l=j$. Thus $\left|D_{n}\right|=2 n$.

