Theorem 1. Let G_1, G_2 be *abelian* groups. Then there exist a unique *abelian* group G, up to isomorphism, with homomorphism $\psi_i : G_i \to G$ satisfying the following *coproduct rule*: For any abelian group G' with any homomorphisms $\psi'_i : G_i \to G'$ there exists a unique homomorphism $\psi : G \to G'$ such that $\psi\psi_i = \psi'_i$ for i=1,2. In fact, G is isomorphism to $G_1 \times G_2$.

Proof:

"existence": Set $G = G_1 \times G_2$ and $\psi_i = \imath_i : G_i \to G_1 \times G_2$ be the inclusive map. Pick any (G', ψ'_1, ψ'_2) as described. Set $\psi : G_1 \times G_2 \to G'$ by $\psi(g_1, g_2) = \psi'_1(g_1) \cdot \psi'_2(g_2)$ for $g_1 \epsilon G_1, g_2 \epsilon G_2$. Clearly, $\psi \psi_i = \psi'_i$ We need to check that $\psi : G_1 \times G_2 \to G'$ is a homomorphism.

$$\psi((g_1, g_2) \cdot (h_1, h_2)) = \psi(g_1 h_1, g_2 h_2)$$

= $\psi'_1(g_1 h_1) \psi'_2(g_2 h_2)$
= $\psi'_1(g_1) \psi'_1(h_1) \psi'_2(g_2) \psi'_2(h_2)$
= $\psi'_1(g_1) \psi'_2(g_2) \psi'_1(h_1) \psi'_2(h_2)$
= $\psi(g_1 g_2) \psi(h_1 h_2)$ for any $g_1, h_1 \epsilon G_1$

"uniqueness": As before.

Question: What is the group ${\cal G}$ in previous theorem. If we drop all the abelian assumption.