1.9 Free group

Def: Let X be a set of symbols and

$$F(x) := \left\{ a_1^{n_1} \cdot a_2^{n_2} \cdot a_3^{n_3} \dots a_t^{n_t} \middle| a_i \in X, n_i \in Z - \{0\}, a_i \neq a_{i+1} \right\}$$

is the set of "reduced words" of $X \cup X^{-1}$.

We define the product of 2 reduced words by concatenation and reduceing the new word to be in F(x).

Example:
$$X = \{a,b\}$$

 $(a^2ba^{-3}b^3a^2)(a^{-2}b^{-3}a^3b^2a)$
 $= a^2ba^{-3}b^3a^2a^{-2}b^{-3}a^3b^2a$
 $= a^2b^3a$

Theorem: ① F(x) is a group with $e = \phi$ ② Let $i: X \to G$ be an injective map. Then there exists a unique homomorphism $\varphi: F(x) \to G$ such that $\varphi(a) = i(a)$ if $a \in X$. pf:Routine.

Note: F(x) is called the free group with generator set X.

Example:
$$X = \{a\}$$
 $F(x) = \{a^i | i \in Z\} \cong \langle Z, + \rangle$

Def: For $Y \subseteq F(x)$

Let N_y be the smallest normal subgroup containing.

(i.e.
$$N_Y = \bigcap_{Y \subset N \triangleleft G} N = \langle g^{-1} Y g | g \in F(x) \rangle$$
)

 $\frac{F(x)}{N_Y}$ is called the group generated by X subject to y = e for $y \in Y$.

Example: Fix $n \in N$

Find the group generated by $X = \{a\}$ subject to $a^n = e$.

Sol:
$$Y = \{a^n\}$$
 $N_Y = \{a^{in} | i \in Z\}$ $F(x) = \{a^i | i \in Z\}$

$$\frac{F(x)}{N_Y} = \left\{ \overline{a^0}, \overline{a^1}, \overline{a^2}, \dots, \overline{a^{n-1}} \right\} \cong \left\langle Z_n, + \right\rangle$$