Advanced Algebra II Class Note

2.7 Nilpotent And Solvable Groups (2)

05/21

Lemma

H < G and G is solvable \Rightarrow H is solvable.

Proof

 $H^{(n)} \subset G^{(n)} = \langle e \rangle$ for some n.

Theorem

Let $\phi: G \to H$ be an epihomomorphism and G is solvable. Then H is solvable.

Proof

Suppose $G^{(n)} = \langle e \rangle$. Then $H^{(n)} = \phi(G)^{(n)} = \phi(G^{(n)}) = \phi(\langle e \rangle) = \langle e \rangle$.

Theorem

Suppose $N \triangleleft G$ and G is solvable. Then G/N is solvable.

Proof

 $\bar{g}\bar{h}\bar{g}^{-1}\bar{h}^{-1} = \overline{ghg^{-1}h^{-1}} \in G'N/N \text{ for } \bar{g}, \bar{h} \in G/N.$ Then $(G/N)' \subseteq G'N/N.$ Hence $(G/N)^{(n)} \subseteq G^{(n)}N/N = \langle \bar{e} \rangle$ for some n.

Theorem

Suppose $N \triangleleft G$ and N, G/N are solvable. Then G is solvable.

Proof

Choose *n* such that $(G/N)^{(n)} = \langle \bar{e} \rangle$. Then $G^{(n)} \subseteq N$. Choose *m* such that $N^{(m)} = \langle e \rangle$. Then $G^{(n+m)} = \langle e \rangle$.

Corollary

If $n \ge 5$, then S_n is not solvable.

Proof

If S_n is solvable, then A_n is solvable. Note $A'_n \triangleleft A_n$, A_n is simple and not abelian. Hence $A'_n = A_n$. Then $A_n^{(m)} = A_n \neq \langle e \rangle$ for all n. Thus A_n is not solvable, a contradiction.