2.7 Nilpotent and Solvable Subgroups

Definition. $G'(:=[G,G]) = \langle ghg^{-1}h^{-1}|g,h \in G \rangle$ is called the commutation subgroup of G.

Example. G is abelian $\Rightarrow G' = \langle e \rangle$

Lemma. $G' \lhd G$.

Proof. We need to prove $ghg^{-1} \in G'$ for any $h \in G', g \in G$. It sufficiences to assume $h = g_1h'_1g_1^{-1}h_1^{-1}$ for $g_1, h_1 \in G$. Then $gg_1h_1g_1^{-1}h_1^{-1}g^{-1}$ $= gg_1g^{-1} \ gh_1g^{-1} \ gg_1^{-1}g^{-1} \ gh_1^{-1}g^{-1}$ $= (gg_1g^{-1})(gh_1g^{-1})(gg_1g^{-1})^{-1}(gh_1g^{-1})^{-1} \in G$.

Lemma. G/G' is abelian.

Proof. $\bar{g}\bar{h}\bar{g}^{-1}\bar{h}^{-1} = \overline{ghg^{-1}h^{-1}} = \bar{e}$ for any $g, h \in G.\square$

Proposition. $N \triangleleft G$. Then G/N is abelian $\Leftrightarrow G' < N$.

Proof. (\Rightarrow) $\overline{ghg^{-1}h^{-1}} = \overline{g}\overline{h}\overline{g}^{-1}\overline{h}^{-1} = \overline{e} = eN \in G/N$ for $g, h \in G$ Hence $ghg^{-1}h^{-1} \in N$ for any $g, h \in G$

 $(\Leftarrow) (G/G')/(N/G') \cong G/N$ is abelian since G/G' is abelian. \Box

Definition. $G^{(1)} = G'$ $G^{(n+1)} = [G^{(n)}, G^{(n)}]$ $G^{(n)}$ is called the n^{th} derived series.

Definition. G is solvable if $G^{(n)} = \langle e \rangle$ for some $n \in \mathbb{N}$.

Definition. Let Z(G) be the center of G. Define $Z_1(G) = Z(G)$. $Z_{n+1}(G)$ is the preimage of $Z(G/Z_n(G))$ i.e. $Z_{n+1}(G)/Z_n(G) = Z(G/Z_n(G))$.

Example. G is abelian. $\Rightarrow G = Z_1(G) = Z_2(G) = \cdots$

Note. $Z_1(G) \lhd Z_2(G) \lhd Z_3(G) \lhd \cdots$

Definition. G is nilpotent if $Z_n(G) = G$ for some $n \in \mathbb{N}$.

Theorem. G is nilpotent \Rightarrow G is solvable.

Proof. Suppose $\langle e \rangle = Z_0(G) \triangleleft Z_1(G) \triangleleft Z_2(G) \triangleleft Z_3(G) \triangleleft \cdots \triangleleft Z_{n-2}(G) \triangleleft Z_{n-1}(G) \triangleleft Z_n(G) = G.$ Then $Z_{n-i}(G) \ge (Z_{n-i+1}(G))' \ge (Z_{n-i+2}(G))' \ge G^{(i)}$, since $Z_{n-i+1}(G)/Z_{n-i}(G)$ is abelian. Hence $\langle e \rangle = Z_0(G) \ge G^{(n)}$.