2.3 The Krull-Schmidt Theorem

Definition 3.1. An endomorphism of G is a homomorphism from G into G.
Note 3.2. An automorphism is an endomorphism $+1-1+$ onto.
Lemma 3.3. Suppose that G has ACCN property and $f \in \operatorname{End}(G)$. T.F.A.E.

1. $f \in \operatorname{Aut}(G)$
2. f is an epimorphism

Proof. $(1 \Rightarrow 2)$ is trivial.
($2 \Rightarrow 1$, already know onto, need to show 1-1) Note $\operatorname{ker} f^{n} \subseteq \operatorname{ker} f^{n+1}$ for $n \in \mathbb{N}$. By ACCN, there exists $m \in \mathbb{N}$ such that $\operatorname{ker} f^{i}=\operatorname{ker} f^{m}$ for all $i \geq m$. Pick $a \in \operatorname{ker} f$. By assumption 2, there exists $b \in G$ such that $f^{m}(b)=a .\left(\because f\right.$ is onto, $\therefore f^{m}$ is onto) Then $e=f(a)=f^{m+1}(b)$. Hence $b \in \operatorname{ker} f^{m+1}=\operatorname{ker} f^{m}$. Thus $a=f^{m}(b)=e$. We proved $\operatorname{ker} f=\{e\}$. Then f is 1-1, and hence an automorphism.

Lemma 3.4. (dual) Suppose that G has $D C C N$ property and $f \in \operatorname{End}(G)$. T.F.A.E.

1. $f \in \operatorname{Aut}(G)$
2. f is an monomorphism

Proof. $(1 \Rightarrow 2)$ is trivial.
(2 $\Rightarrow 1$, already know 1-1, need to show onto) Note $\operatorname{Img} f^{n} \supseteq \operatorname{Img} f^{n+1}$ for $n \in \mathbb{N}$. By DCCN, there exists $m \in \mathbb{N}$ such that $\operatorname{Img} f^{i}=\operatorname{Img} f^{m}$ for all $i \geq m$. Pick $a \in G$. Then there exists $b \in G$ such that $f^{m+1}(b)=f^{m}(a)$. By assumption 2, $f^{m}(a)=f^{m+1}(b)=f^{m}(f(b))$ implies $a=f(b) .\left(\because f\right.$ is 1-1, $\therefore f^{m}$ is 1-1) Then f is onto, and hence an automorphism.

Definition 3.5. $f \in \operatorname{End}(G)$ is normal if $a^{-1} f(b) a=f\left(a^{-1} b a\right)$ for any $a, b \in G$.
Example 3.6. $\pi_{1}: G_{x} \times G_{2} \rightarrow G_{1} \times G_{2}$, and $\pi_{1}((a, b))=(a, e)$ is normal.
Proof. $\left(h_{1}, h_{2}\right)^{-1} \pi_{1}(a, b)\left(h_{1}, h_{2}\right)=\left(h_{1}, h_{2}\right)^{-1}(a, e)\left(h_{1}, h_{2}\right)=\left(h_{1}^{-1} a h_{1}, h_{2}^{-1} e h_{2}\right)$
$=\pi_{1}\left(\left(h_{1}, h_{2}\right)^{-1}(a, b)\left(h_{1}, h_{2}\right)\right)$
Note 3.7. $f \in \operatorname{End}(G)$ is normal $\Rightarrow \operatorname{Img} f^{n} \triangleleft G$ for all $n \in \mathbb{N}$. $\left(a^{-1} f^{2}(b) a=a^{-1} f(f(b)) a=\right.$ $\left.f\left(a^{-1} f(b) a\right)=f\left(f\left(a^{-1} b a\right)\right)=f^{2}\left(a^{-1} b a\right)\right)$

Lemma 3.8. Suppose that G satisfies both $A C C N$ and $D C C N$, and $f \in \operatorname{End}(G)$ is normal. Then $G=\operatorname{ker} f^{n} \times \operatorname{Img} f^{n}$ for some $n \in \mathbb{N}$.

Proof. Pick $n \in \mathbb{N}$ such that for all $i \geq n$ we have $\operatorname{ker} f^{i}=\operatorname{ker} f^{n}$ and $\operatorname{Img} f^{i}=\operatorname{Img} f^{n}$.
Claim: $G=\operatorname{ker} f^{n} \times \operatorname{Img} f^{n}$

1. Pick $a \in \operatorname{ker} f^{n} \cap \operatorname{Img} f^{n}$. Then $f^{n}(a)=e$ and $f^{n}(b)=a$ for some $b \in G$. Hence $f^{2 n}(b)=f^{n}(a)=e$. Thus $b \in \operatorname{ker} f^{2 n}=\operatorname{ker} f^{n}$. Then $a=f^{n}(b)=e$.
2. Pick any $g \in G$. Pick $h \in G$ such that $f^{2 n}(h)=f^{n}(g)$. Then $g=g f^{n}\left(h^{-1}\right) f^{n}(h)$. Since $f^{n}(h) \in \operatorname{Img} f^{n}$. We want to show $g f^{n}\left(h^{-1}\right) \in \operatorname{ker} f^{n}$. Since $f^{n}\left(g f^{n}\left(h^{-1}\right)\right)=$ $f^{n}(g) \cdot f^{2 n}\left(h^{-1}\right)=f^{n}(g) \cdot f^{n}\left(g^{-1}\right)=e$, we are done.

Definition 3.9. $f \in \operatorname{End}(G)$ is nilpotent if there exists $n \in \mathbb{N}$ such that $f^{n}(a)=e$ for all $a \in G$.

Example 3.10. $G=\mathbb{Z}_{8} . f(a)=a+a$ for $a \in \mathbb{Z}_{8} . \Rightarrow f^{3}(a)=0$ for all $a \in \mathbb{Z}_{8}$.
Corollary 3.11. Let G be indecomposable, $A C C N, D C C N$, and $f \in \operatorname{End}(G)$ is normal. Then f is nilpotent or f is an automorphism.

Proof. Pick $n \in \mathbb{N}$ such that $G=\operatorname{ker} f^{n} \times \operatorname{Img} f^{n}$. Since G is indecomposable, either $\operatorname{ker} f^{n}=G$ or $\operatorname{Img} f^{n}=G$. In the first case, f is nilpotent, and the latter is onto (then automorphism by previous lemma).

