Definition. Let $f, g: G \mapsto G$ be function (not necessary endomorphism). Define a function $f + g: G \mapsto G$ by $(f + g)(a) = f(a) \cdot g(a)$.

Note. 1. $f + g \neq g + f$ if g is not abelian.

f,g ∈ End(G) ⇒ f + g ∈ End(G)
G^G := {f|f : G → G is a function } is a group under +.
O_G : G → G is defined by O_G(a) = e for a ∈ G
-f : G → G is defined by (-f)(a) = f(a⁻¹)
For f, g, h ∈ G^G. (f + g)h = f ⋅ h + g ⋅ h

Proof. 6.

$$(f+g) \cdot h(a) = (f+g)(h(a))$$

= $f(h(a)) \cdot g(h(a))$
= $(f \cdot h)(a) \cdot (g \cdot h)(a)$
= $(f+h \cdot g+h)(a)$

Example. $G = S_3$ $f(\sigma) = (123)^{-1}\sigma(123)$ $g(\sigma) = (12)^{-1}\sigma(12)$ $\Rightarrow 1.f, g \in End(G)$ $2.(f+g)(\sigma) = (123)\sigma(123)^{-1}(132)\sigma(132)^{-1} = (123)\sigma(123)\sigma(123)$

Use $f + g(123) \neq f + g(12)(f + g)(13)$ to check $f + g \notin End(G)$

$$\begin{split} \mathbf{Example.} & \prod_i : G_1 \times G_2 \times G_3 \to G_1 \times G_2 \times G_3 \\ & \prod_1 : (a, b, c) \to (a, e, e) \\ & \prod_2 : (a, b, c) \to (e, b, e) \\ & \prod_i \in End(G_1 \times G_2 \times G_3) \\ & \Rightarrow 1. \prod_1 + \prod_2 (a, b, c) = (a, b, e) \\ & 2. \prod_1 + \prod_2 \in End(G_1 \times G_2 \times G_3)) \end{split}$$

Remark. G has ACCN, DCCN and is indecomposable. $f \in End(G)$ is normal. $\Rightarrow f$ is nilpotent or f is an automorphism.

Lemma. Suppose $f, g, f + g \in End(G)$ and f, g are normal. Then f + g is normal. **Proof.** $a^{-1}(f + g(b))a$ $= a^{-1}f(b)g(b)a$ $= a^{-1}f(b)aa^{-1}g(b)a$ $= f(a^{-1}ba)g(a^{-1}ba)$ $= (f + g)(a^{-1}ba).\square$

Lemma. Let G be indecomposable satisfying ACCN, DCCN. Suppose $f, g, f+g \in End(G)$, and suppose f, g are nilpotent. Then f + g is nilpotent.

Proof. Suppose that f + g is not nilpotent. Then $f + g \in Aut(G)$. Hence $(f + g)h = I_G$ for some $h \in Aut(G)$. Set f' = fh and g' = gh. Then $f' + g' = I_G$. Note (g' + f')(a)= q'(a)f'(a) $= (f'(a^{-1})g'(a^{-1}))^{-1}$ $= ((f' + g')(a^{-1}))^{-1}$ = afor all $a \in G$ Thus f' + g' = g' + f'Also f'(f'+g') $= f' \cdot I_G$ $= I_G \cdot \tilde{f'}$ = (q'+f')f'By canceling f'^2 , we have f'g' = g'f'By binomial theorem, $(f'+g')^n = \sum_{k=0}^n \binom{n}{k} f'^k g'^{n-k}$ Note $f', g' \in Aut(G)$, since $f, g \notin Aut(G)$. Hence f', g' are nilpotent. Then $(f' + g')^n = 0$ if n large, a contradiction. \Box