Definition. Let $f, g: G \mapsto G$ be function (not necessary endomorphism). Define a function $f+g: G \mapsto G$ by $(f+g)(a)=f(a) \cdot g(a)$.

Note. 1. $f+g \neq g+f$ if g is not abelian.
2. $f, g \in \operatorname{End}(G) \nRightarrow f+g \in \operatorname{End}(G)$
3. $G^{G}:=\{f \mid f: G \mapsto G$ is a function $\}$ is a group under + .
4. $O_{G}: G \mapsto G$ is defined by $O_{G}(a)=e$ for $a \in G$
5. $-f: G \mapsto G$ is defined by $(-f)(a)=f\left(a^{-1}\right)$
6. For $f, g, h \in G^{G} .(f+g) h=f \cdot h+g \cdot h$

Proof. 6.

$$
\begin{aligned}
(f+g) \cdot h(a) & =(f+g)(h(a)) \\
& =f(h(a)) \cdot g(h(a)) \\
& =(f \cdot h)(a) \cdot(g \cdot h)(a) \\
& =(f+h \cdot g+h)(a)
\end{aligned}
$$

Example. $G=S_{3}$

```
\(f(\sigma)=(123)^{-1} \sigma(123)\)
\(g(\sigma)=(12)^{-1} \sigma(12)\)
\(\Rightarrow 1 . f, g \in \operatorname{End}(G)\)
    \(2 .(f+g)(\sigma)=(123) \sigma(123)^{-1}(132) \sigma(132)^{-1}=(123) \sigma(123) \sigma(123)\)
```

Use $f+g(123) \neq f+g(12)(f+g)(13)$ to check $f+g \notin \operatorname{End}(G)$

Example. $\prod_{i}: G_{1} \times G_{2} \times G_{3} \rightarrow G_{1} \times G_{2} \times G_{3}$

```
\(\prod_{1}:(a, b, c) \rightarrow(a, e, e)\)
\(\prod_{2}:(a, b, c) \rightarrow(e, b, e)\)
\(\prod_{i} \in \operatorname{End}\left(G_{1} \times G_{2} \times G_{3}\right)\)
\(\Rightarrow 1\). \(\prod_{1}+\prod_{2}(a, b, c)=(a, b, e)\)
    2. \(\left.\prod_{1}+\prod_{2} \in \operatorname{End}\left(G_{1} \times G_{2} \times G_{3}\right)\right)\)
```

Remark. G has $A C C N, D C C N$ and is indecomposable. $f \in \operatorname{End}(G)$ is normal. $\Rightarrow f$ is nilpotent or f is an automorphism.

Lemma. Suppose $f, g, f+g \in \operatorname{End}(G)$ and f, g are normal. Then $f+g$ is normal.
Proof. $a^{-1}(f+g(b)) a$
$=a^{-1} f(b) g(b) a$
$=a^{-1} f(b) a a^{-1} g(b) a$
$=f\left(a^{-1} b a\right) g\left(a^{-1} b a\right)$
$=(f+g)\left(a^{-1} b a\right)$

Lemma. Let G be indecomposable satisfying $A C C N, D C C N$. Suppose $f, g, f+g \in \operatorname{End}(G)$, and suppose f, g are nilpotent. Then $f+g$ is nilpotent.

Proof. Suppose that $f+g$ is not nilpotent.
Then $f+g \in \operatorname{Aut}(G)$.
Hence $(f+g) h=I_{G}$ for some $h \in \operatorname{Aut}(G)$.
Set $f^{\prime}=f h$ and $g^{\prime}=g h$.
Then $f^{\prime}+g^{\prime}=I_{G}$.
Note $\left(g^{\prime}+f^{\prime}\right)(a)$
$=g^{\prime}(a) f^{\prime}(a)$
$=\left(f^{\prime}\left(a^{-1}\right) g^{\prime}\left(a^{-1}\right)\right)^{-1}$
$=\left(\left(f^{\prime}+g^{\prime}\right)\left(a^{-1}\right)\right)^{-1}$
$=a$
for all $a \in G$
Thus $f^{\prime}+g^{\prime}=g^{\prime}+f^{\prime}$
Also $f^{\prime}\left(f^{\prime}+g^{\prime}\right)$
$=f^{\prime} \cdot I_{G}$
$=I_{G} \cdot f^{\prime}$
$=\left(g^{\prime}+f^{\prime}\right) f^{\prime}$
By canceling $f^{\prime 2}$, we have $f^{\prime} g^{\prime}=g^{\prime} f^{\prime}$
By binomial theorem, $\left(f^{\prime}+g^{\prime}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} f^{\prime k} g^{\prime n-k}$
Note $f^{\prime}, g^{\prime} \in \operatorname{Aut}(G)$, since $f, g \notin \operatorname{Aut}(G)$.
Hence f^{\prime}, g^{\prime} are nilpotent.
Then $\left(f^{\prime}+g^{\prime}\right)^{n}=0$ if n large , a contradiction.

