2.4 The action of group on a set

Definition. An action of a group G on a set is a map $G \times S \rightarrow S$ by sending (g, s) into g, s s.t
$1 e \cdot s=s$ and
$2(g h) \cdot s=g \cdot(h \cdot s)$ for all $g, h \in G$ and $s \in S$
Note: Let G act on a set S. Then there is a homomorphism from G into the permutation subgroup on S.
i.e $|S|=n \Rightarrow G \rightarrow S_{n}$ a homomorphism.
ex. $G=S_{n}, S=\{1,2, \ldots, n\}$. Then we can define the action of G on S by the usual mapping of a function. i.e $\sigma(i) \in S$ for $\sigma \in G$ and $i \in S$
ex. $G<H$. Then

1. G acts on H by "left translation" i.e $g \cdot h=g h$ for $g \in G$ and $h \in H$
2. H acts on the left cosets of G (by left translations). i.e. $S=\{a G \mid a \in H\}$ and $H \cdot a G=h a G$ for all $h, a \in H$
3. H acts on the right cosets of G by right translations. i.e $S=\{G a \mid a \in H\}$ and $h \cdot G a=G a h^{-1}$ (neither Gha nor Gah, check the definition)

Definition. Let G act on a set S. For $s \in S, O_{s}:=\{g \cdot s \mid g \in G\}$ is called the orbit of s and $G_{s}:=\{g \in G \mid g \cdot s=s\}$ is called the stabilizer or isotropy group of s
ex. Suppose $G<H$ and G acts on H by left translations. Then for $s \in H$, $O_{s}=\{g s \mid g \in G\}$ is a right coset of G, and $G_{s}=\{e\}$

Note:
(1) $O_{s}=O_{s^{\prime}}$ or $O_{s} \cap O_{s^{\prime}}=\phi$ for $s, s^{\prime} \in S$
(2) $\left|O_{s}\right|=\frac{|G|}{\left|G_{s}\right|}$
(3) If $S=O_{s_{1}} \cup O_{s_{2}} \cup \ldots \cup O_{s_{t}}$
then $|s|=\sum_{i=1}^{t}\left|O_{s_{i}}\right|=\sum_{i=1}^{t} \frac{|G|}{\left|G_{s_{i}}\right|}=$ the number of $\left\{s_{i} \mid G_{s_{i}}=G\right\}+\sum_{G_{s_{i}} \neq G} \frac{|G|}{\left|G s_{s_{i} i}\right|}$ (class equation)
ex. Let p be the smallest prime dividing $|G|$ and $H<G$ with $[G: H]=p$. Then $H \triangleleft G$.
Pf: Set $S=\{a H \mid a \in G\}$. Let G act on S by left translation. This action gives a homomorphism $\phi: G \rightarrow S_{p}$ where $p=|S|=\frac{|G|}{|H|}$. Let $k=$ ker ϕ. For $k \in K, k \cdot a H=a H$ for any $a \in G$. In particular, by choose $a=e$, we find $k \subseteq H$. Hence $p=\frac{|G|}{|H|}\left|\frac{|G|}{|K|}=\right|$ Img $\phi\left|\left|\left|s_{p}\right|=p\right.\right.$!. Since for each prime $g<p, g \nmid|G|$ and then $g \nmid \frac{|G|}{|k|}$, we have $\frac{|G|}{|K|}=p$ and then $H+K, K=$ ker ϕ is clear to be normal in G.

