
2.5 Sylow Theorem

Theorem 1. (Cauchy Theorem)
Suppose p | |G|,where p is a prime.Then there exists a ε G ,with order p.

Proof.

SetS = Gp = {(g1, g2, ..., gp)|gi ε G, g1g2...gp = e}

Note:|S| = |G|p−1

Since gp = (g1g2...gp−1)−1

Pick σ = (1, 2, ..., p)εSp and H :=< σ >

Let H acts on S by
σ · (g1, g2, ..., gp) = (gσ(1), gσ(2), ..., gσ(p))εS

By class equation,

|G|p−1 = |S|

=
∑
i

|Θsi
|

=
∑
i

|H|
|Hsi |

=
∑
i

p

|Hsi |

Since p | |G|p−1 , p |
∑
i

p

Hsi

Note:

H(e,e,...e) = H

Hence,there exists sj s.t.Θsj 6= Θ(e,e,...e) and Hsj = H

Assume,sj = (a1, a2, ..., ap)εS

Since σεH = Hsj
,we have σ · sj = sj

i.e.(a2, a3, ..., ap, a1) = (a1, a2, ..., ap)

i.e.a1 = a2 = ... = ap = a for some a ε G

Note:ap = e and a 6= e
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Definition 1. Suppose |G| <∞ Let t ε N
⋃
{0}s.t. pt | |G| and pt+1 - |G|

Define Sylp(G) := {H < G||H| = pt} is the set of p-Sylow subgroup.

Theorem 2. (First Sylow Theorem)

Sylp(G) 6= ∅

Proof.

Induction on |G|

Let G acts on G by conjugation.

i.e. S = G , and g· s = g−1sg for g, s ε G

Then (by class equation)

|S| = |G|

=
∑
i

|Θsi |

=
∑

i,|Θsi
|=1

1 +
∑

i,|Θsi
|6=1

|Θsi
|

Note:

|Θsi
| = 1⇔ g−1sig = si , for all g ε G ⇔ si εZ(G),the order of G.

Hence |G| = |Z(G)|+
∑

i,Gsi
6=G

|G|
|Gsi
|

Case1:

p | |Z(G)|, by Cauchy Theorem , there exists a ε Z(G) with |a| = p

Note:< a > CG , By induction hypothesis , there exists H ε Sylp(
G

< a >
)

Set H =
{
g ε G|g < a > ε H

}
Then H ε Sylp(G)

2



Case2:

p - |Z(G)|

Then p -
|G|
|Gsi
|

for some i

Hence , Sylp(Gsi) ⊆ Sylp(G) , by induction.

Note:

By the some method in the proof of Sylow 1st Theorem

|Z(G)| 6= 1 , if |G| = pn(i.e. if |G| = pn ⇒ |Z(G)| 6= < e >)

Theorem 3. (Second Sylow Theorem)

H,H ′ ε Sylp(G) ⇒ H ′ = g−1Hg , for some g ε G

i.e. Any 2 p-Sylow subgroups are conjugate.

Proof.
Let H ′ acts on the left coset of H in G.

Then by class equation,
|G|
|h|

=
∑
|Θsi
|=1 1 +

∑
|Θsi
|6=1

|H ′|
|H ′si
|

Note:

|Osi | = 1 ⇔ g · si for all g ε H ′(Say si = giH)
⇔ ggiH = giH, for all g ε H ′

⇔ g−1
i ggi ε H, for all g ε H ′

⇔ g−1
i H ′gi = H

Note:

p - | |G|
|H|

,p | |H
′|

|H ′si
|

for all i with |Θsi
| 6= 1

Hence, p -
∑
|Θsi
|=1

1

Then there exists si with |Θsi | = 1

i.e.g−1
i H ′gi = H
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Theorem 4. (Third Sylow Theorem)
(1) |Sylp(G)| divides |G|
(2) |Sylp(G)| ≡ 1(mod p)

Proof.
(1)

Let G acts on Sylp(G) by conjugations.

i.e.S = Sylp(G) , g · si = g−1sig for g ε G

By there is a unique orbit , by 2nd Sylow Theorem.

Then|Sylp(G)| =
|G|
|Gsi
|

Hence,|Sylp(G)| divides |G|

(2)

Pick P ε Sylp(G) , by 1st Theorem

Let P acts on Sylp(G) by conjugation.

Then by class equation:

|Sylp(G)| =
∑
|Θsi
|=1

1 +
∑
|Θsi
|6=1

|P |
|Psi
|

Note:

|Osi | = 1 ⇔ g−1sig = si , for all g ε P
⇔ P ⊆ NG(si)
⇔ p = si(ifp = si ⇔ P ⊆ NG(si))

Note:

p, si ε Sylp(NG(si)) , if P ⊆ NG(si)

Hence,p = g−1sig = si for some g ε NG(si) , by 2nd Sylow Theorem.

Hence
∑
|Θsi
|=1

1 = 1

Then |Sylp(G)| = 1 +
∑
Psi
6=P

|P |
|Psi |

≡ 1(modp)
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