2.6 Classification of finite groups

Theorem: Suppose $|G|=p q$, where p, q are prime and $q n \neq p-1 \quad \forall n \in Z$. Then $G \cong Z_{p q}$.
$p f:|\operatorname{Sylp}(G)|=k p+1|q \Rightarrow| \operatorname{Sylp}(G) \mid=1$
Say $H \in \operatorname{Sylp}(G)$, then $H \triangleleft G$.
Also, $|\operatorname{Sylq}(G)|=k q+1|p \Rightarrow| \operatorname{Sylq}(G) \mid=1, q+1,2 q+1 \ldots .$.

The assumption $q n \neq p-1 \quad \forall n \in Z$ implies $|\operatorname{Sylq}(G)|=1$.
Say $K \in \operatorname{Sylq}(G)$.
Note : $H \cap K=\langle e\rangle$, since $(p, q)=1$.

Hence $G=H \times K \cong Z_{P} \times Z_{q} \cong Z_{p q}$.

Suppose $q<p$ primes and $q \mid p-1$.
Fix $2 \leq s \leq p-1, s^{q} \equiv 1 \bmod p$,
Set: $=\left\{a^{i} b^{j} \mid 0 \leq i \leq p-1,0 \leq j \leq q-1\right\} \cong Z_{p} \nabla_{s} Z_{q}$,
where $a^{p}=b^{q}=e, \quad b a=a^{s} b, \quad(\langle a\rangle \triangleleft K)$

Theorem: Suppose $|G|=p q, q<p$ primes and $q \mid p-1$. Suppose G is not abelian. Then $G \cong K$.
$p f$: As before $|\operatorname{Sylp}(G)|=1$. Hence $H \in \operatorname{Sylp}(G) \Rightarrow H \triangleleft G$.

Assume $H=\langle a\rangle$ foe some $a \in G$ with $|a|=|h|=p$.

Pick any $b_{1} \in G-\langle a\rangle$. Then $b_{1} a b_{b}^{-1}=a^{k}$ for some $1 \leq k \leq p-1$

If $k=1$ then $b_{1} a=a b_{1}$, and note that $\langle a\rangle \cap\left\langle b_{1}\right\rangle=\langle e\rangle$,

$$
\text { hence }\left|\langle a\rangle\left\langle b_{1}\right\rangle\right|=\frac{|\langle a\rangle||\langle b\rangle|}{\left|\langle a\rangle \cap\left\langle b_{1}\right\rangle\right|} \geq \frac{p q}{1}
$$

Then $G=\langle a\rangle\left\langle b_{1}\right\rangle$ is abelian. $\rightarrow \leftarrow$

Hence $k \neq 1$, note

$$
b_{1} a b_{b}^{-1}=\left(\left(\left(\left(a^{k}\right)^{k}\right)^{k}\right)^{k^{\vdots}}\right)^{k}=a^{k^{t}}
$$

Note $\left|b_{1}\right|=q$. Hence $a=b_{1}^{q} a b_{1}^{-q}=a^{k^{q}}$ and $a \neq a^{k^{i}}$ for $1 \leq i \leq q-1$, otherwise G is abelian. $\left(a=b_{1}^{t} a b_{1}^{-t} \Leftrightarrow a b_{1}^{t}=b_{1}^{t} a\right)$
Hence $p \mid k^{q}-1$, but $p n \neq k^{i}-1 \quad \forall n \in N$ for $1 \leq i \leq q-1$.

Then k is a "primitive" root of $x^{q}=1$ in Z_{p}.
i.e. $\left\{k, k^{2}, k^{3}, k^{4} \ldots k^{q}=1\right\}$ is the set of all root of $x^{q}=1$ in Z_{p}.
(Here"all" is related to (1) U_{p} is cyclic
(2) $\left\{a \in Z_{p} \mid a^{q}=1\right\}$ is a subgroup of U_{p}
(3) A subgroup of cyclic group is cyclic)

Since $s^{q}=1$, we have $k^{i}=s$ for some $1 \leq i \leq q$
Choose $b=b^{i}$. Then $b a b^{-1}=b_{1}^{i} a b_{1}^{-i}=a^{k^{i}}=a^{s}$.

Thus $G=\langle a\rangle\langle b\rangle=k$.

