2.6 Classification of finite groups

Theorem: Suppose |G| = pq, where p, q are prime and $qn \neq p-1$ $\forall n \in \mathbb{Z}$.

Then $G \cong Z_{pq}$.

$$pf: |Sylp(G)| = kp + 1|q \Rightarrow |Sylp(G)| = 1$$

Say $H \in Sylp(G)$, then $H \triangleleft G$.
Also, $|Sylq(G)| = kq + 1|p \Rightarrow |Sylq(G)| = 1, q + 1, 2q + 1....$

The assumption $qn \neq p-1$ $\forall n \in \mathbb{Z}$ implies |Sylq(G)| = 1.

Say $K \in Sylq(G)$.

Note : $H \cap K = \langle e \rangle$, since (p,q) = 1.

Hence $G = H \times K \cong Z_P \times Z_q \cong Z_{pq}$.

Suppose q < p primes and q|p-1.

Fix $2 \le s \le p-1$, $s^q \equiv 1 \mod p$, Set:= $\left\{ a^i b^j | 0 \le i \le p-1, 0 \le j \le q-1 \right\} \cong Z_p \nabla_s Z_q$,

where $a^{p} = b^{q} = e$, $ba = a^{s}b$, $(\langle a \rangle \triangleleft K)$

Theorem: Suppose |G| = pq, q < p primes and q|p-1. Suppose G is not abelian. Then $G \cong K$.

pf: As before |Sylp(G)| = 1. Hence $H \in Sylp(G) \Rightarrow H \triangleleft G$.

Assume $H = \langle a \rangle$ for some $a \in G$ with |a| = |h| = p.

Pick any $b_1 \in G - \langle a \rangle$. Then $b_1 a b_b^{-1} = a^k$ for some $1 \le k \le p - 1$

If k = 1 then $b_1 a = ab_1$, and note that $\langle a \rangle \cap \langle b_1 \rangle = \langle e \rangle$,

hence
$$|\langle a \rangle \langle b_1 \rangle| = \frac{|\langle a \rangle||\langle b \rangle|}{|\langle a \rangle \cap \langle b_1 \rangle|} \ge \frac{pq}{1}$$

Then $G = \langle a \rangle \langle b_1 \rangle$ is abelian. $\rightarrow \leftarrow$

Hence
$$k \neq 1$$
, note $b_1 a b_b^{-1} = \left(\left(\left(a^k \right)^k \right)^k \right)^{k} \right)^k = a^{k'}$

Note $|b_1| = q$. Hence $a = b_1^q a b_1^{-q} = a^{k^q}$ and $a \neq a^{k^i}$ for $1 \le i \le q-1$, otherwise *G* is abelian. $(a = b_1^t a b_1^{-t} \Leftrightarrow a b_1^t = b_1^t a)$ Hence $p|k^q - 1$, but $pn \ne k^i - 1 \quad \forall n \in N$ for $1 \le i \le q-1$.

Then k is a "primitive" root of $x^q = 1$ in Z_p .

i.e. $\{k, k^2, k^3, k^4 \dots k^q = 1\}$ is the set of all root of $x^q = 1$ in Z_p .

(Here "all" is related to 1) U_p is cyclic

(2)
$$\left\{ a \in Z_p | a^q = 1 \right\}$$
 is a subgroup of U_p

(3) A subgroup of cyclic group is cyclic) Since $s^q = 1$, we have $k^i = s$ for some $1 \le i \le q$

Choose
$$b = b^{i}$$
. Then $bab^{-1} = b_1^{i}ab_1^{-i} = a^{k^{i}} = a^{s}$

Thus $G = \langle a \rangle \langle b \rangle = k$.