2.6 Classification of Finite Groups: Part II

(1). $|G|=1 \Rightarrow G=\langle e\rangle$.
(2). $|G|=p(p=2,3,5,7,11,13, \ldots$ is a prime $)$
$\Rightarrow G=\langle a\rangle($ for $e \neq a \in G)$
$\cong \mathbb{Z}_{p}$
(3). $|G|=p q(q \nmid p-1)(|G|=15,33, \ldots)$
$\Rightarrow G \cong \mathbb{Z}_{p q}$.
(4). $|G|=p q(q \mid p-1)(|G|=6,10,14,21,22, \ldots)$
\Rightarrow (a) abelian
$G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q} \cong \mathbb{Z}_{p q}$.
(b) nonabelian
$G \cong \mathbb{Z}_{p} \rtimes \mathbb{Z}_{q}$.
(5) $|G|=p^{2}(|G|=4,9,25, \ldots)$
$\Rightarrow \quad G$ is abelian
$\Rightarrow \quad G \cong \mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
(6) $|G|=8$
$\Rightarrow \quad(a) \quad$ (abelian)
$G \cong \mathbb{Z}_{8}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$
(b) (nonabelian)

Case $b .1: \exists a \in G$ with $|a|=8$, which contradicts to nonabelian.
Case $b .2: \forall e \neq a \in G$ with $|a|=2$.
$e=(b a)^{2} \Rightarrow b a=a^{-1} b^{-1}$
$a b a^{-1} b^{-1}=a b b a=e$, which contradicts to nonabelian.
Case b.3: $a \in G$ with $|a|=4$
$[G:\langle a\rangle]=2 \Rightarrow\langle a\rangle \triangleleft G$
Pick $b \in G \backslash\langle a\rangle$.
Then $G=\langle a\rangle \dot{U} b<a\rangle$.
Case $b .3(i):|b|=2$

$$
\begin{aligned}
& b a b^{-1}=a^{3}=a^{-1}\left(\left|b a b^{-1}\right|=|a|\right) \\
& G \cong<a>\rtimes\mathbb{Z}_{4} \rtimes \mathbb{Z}_{2} \cong D_{4} . \\
& \text { Case } b .3(i i):|b|=4 \\
& |G /<a>|=2 \\
& \Rightarrow b^{2}<a>=<a> \\
& \Rightarrow b^{2} \in<a> \\
& \text { Since }|b|=4, b^{2}=a^{2} . \\
& G=\left\{b^{j} a^{i} \mid 0 \leq i \leq 3,0 \leq j \leq 1\right\} \cong Q_{8} \\
& \text { with identification } \\
& a \rightarrow i, b \rightarrow j,(a b)^{2}=a^{2}=b^{2} \rightarrow-1, a b \rightarrow k .
\end{aligned}
$$

(7) $|G|=12=2^{2} \times 3$
$\Rightarrow \quad$ (a) (abelian)
$G \cong \mathbb{Z}_{4} \times \mathbb{Z}_{3}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}$
\Rightarrow (b) (nonabelian)
Pick $<a>\in \operatorname{Syl}_{3}(G)$
Let G act on left coset of $\langle a\rangle$ in G.
This gives a homomorphism $\phi: G \rightarrow S_{4}($ since $[G:<a>]=4)$
and $\operatorname{Ker} \phi \subseteq<a\rangle$.
Hence $\operatorname{ker} \phi=<e\rangle$ or $\langle a\rangle($ since $|<a\rangle \mid=3)$
If $\operatorname{ker} \phi=<e>$,
then $G \cong \phi(G)=A_{4}$ by checking all subgroups of order 12 in S_{4}.
(In fact, A_{4} is the only subgroup of S_{4} of index 2 and $\left|S_{4}\right| / 2=\left|A_{4}\right|=12$.)
Suppose $\operatorname{ker} \phi=<a\rangle$.
Then $|G /<a\rangle \mid=4$ and $G /\langle a\rangle$ is abelian.
(In fact, any group with four elements is abelian.)
Hence $G /<a>\cong \mathbb{Z}_{4}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
Case 1: $G /<a\rangle \cong \mathbb{Z}_{4}$.
$G=<a>\dot{\bigcup} b<a>\dot{\bigcup} b^{2}<a>\dot{U} b^{3}<a>$, where $b^{4} \in<a>(*)$.
If $b^{4}=a, a^{-1}$,
then $|b|=12$, which contradicts to the fact that G is not abelian.
Then $b^{4}=e$
Since $\langle a\rangle \triangleleft G, b a b^{-1}=a^{-1}$.
(If $b a b^{-1}=a$ then G is abelian by (*))
Hence $G \cong\langle a\rangle \rtimes\langle b\rangle$.
Case 2: $G /<a>\cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$
Then $G=<a>\dot{U} b<a>\dot{\bigcup} c<a>\dot{\bigcup} b c<a>$
where $b^{2}, c^{2},(b c)^{2} \in<a>$.

If $b^{2}=a, a^{-1}$ then $|b|=6$.
If $b^{2}=e$ and $a b=b a$ then $|a b|=6$.
If $b^{2}=e$ and $a b \neq b a$ then $b a b^{-1}=a^{-1}$.
Hence there exists $t \in G$ with $|t|=6$
unless $b a b^{-1}=a^{-1}, c a c^{-1}=a^{-1},(b c) a(b c)^{-1}=a^{-1}$ and $b^{2}=c^{2}=(b c)^{2}=e$.
In this case, $a^{-1}=(b c) a(b c)^{-1}=b\left(c a c^{-}\right)=b a^{-1} b^{-1}=\left(b a b^{-1}\right)^{-1}=a$,
a contradiction.
Since $[G:<t>]=2, \quad<t>\triangleleft G$.
Pick $u \in G \backslash<t>$.
Then $G=<t>\dot{U} u<t>$, where $u^{2} \in<t>$.
If $u^{2}=t$ or t^{-1} then $G=\langle u\rangle$ is abelianm which is a contradiction.
If $u^{2}=t^{3}$ then $u^{4}=t^{6}=e$ and we have
$G /<a\rangle=<u<a\rangle>\cong \mathbb{Z}_{4}$, which is a contradiction.
If $u^{2}=t^{2}$ or t^{4}, then $|u|=6$ and $\langle u\rangle \quad \triangleleft G$
Assume $u^{2}=t^{2}$. Note that $u t u^{-1} t^{-1} \neq e$ since G is not abelian.
Hence $u t u^{-1}=t^{-1}$ subce $\left|u t u^{-1}\right|=\left|t^{-1}\right|$.
and similarly $t u t^{-1}=u^{-1}$
Then $u^{2}=u\left(t u^{-1} t^{-1}\right)=t^{-2}$, which is a cntradiction.
Simiilar for $u^{2}=t^{4}$, we have another contradiction.
Then $u^{2}=e$ and $u t u^{-1}=t^{-1}$
Hence $G \cong<t>\rtimes<u>$.
With $t \rightarrow \sigma, u \rightarrow \tau$, we have $G \cong D_{6}$

