2.6 Classification of Finite Groups: Part II

(1).
$$|G| = 1 \Rightarrow G = \langle e \rangle$$
.

(2).
$$|G| = p \ (p = 2, 3, 5, 7, 11, 13, \dots \text{ is a prime})$$

 $\Rightarrow G = \langle a \rangle \ (\text{for } e \neq a \in G)$
 $\cong \mathbb{Z}_p$

(3).
$$|G| = pq (q \nmid p-1) (|G| = 15, 33, ...)$$

 $\Rightarrow G \cong \mathbb{Z}_{pq}.$

(4).
$$|G| = pq (q|p-1) (|G| = 6, 10, 14, 21, 22, ...)$$

 $\Rightarrow (a)$ abelian

$$G \cong \mathbb{Z}_p \times \mathbb{Z}_q. \cong \mathbb{Z}_{pq}.$$

(b) nonabelian

$$G \cong \mathbb{Z}_p \rtimes \mathbb{Z}_q.$$

(5)
$$|G| = p^2 (|G| = 4, 9, 25, ...)$$

 $\Rightarrow G \text{ is abelian}$

$$\Rightarrow \quad G \cong \mathbb{Z}_{p^2} \text{ or } \mathbb{Z}_p \times \mathbb{Z}_p.$$

(6)
$$|G| = 8$$

$$\Rightarrow (a) (abelian)
G \cong \mathbb{Z}_8, \ \mathbb{Z}_4 \times \mathbb{Z}_2, \ \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2
(b) (nonabelian)$$

e

(nonabelian)
Case
$$b.1$$
: $\exists a \in G$ with $|a| = 8$, which contradicts to nonabelian.
Case $b.2$: $\forall e \neq a \in G$ with $|a| = 2$.

$$= (ba)^2 \Rightarrow ba = a^{-1}b^{-1}$$

 $aba^{-1}b^{-1} = abba = e$, which contradicts to nonabelian. Case $b.3: a \in G$ with |a| = 4

$$[G :< a >] = 2 \Rightarrow \langle a > \triangleleft G$$

Pick $b \in G \setminus \langle a > .$
Then $G = \langle a > \bigcup b \langle a > .$
Case $b.3(i): |b| = 2$

 $bab^{-1} = a^3 = a^{-1} (|bab^{-1}| = |a|)$ $G \cong <a > \rtimes \cong \mathbb{Z}_4 \rtimes \mathbb{Z}_2 \cong D_4.$ Case *b*.3 (*ii*) : |b| = 4|G| < a > | = 2 $\Rightarrow b^2 < a > = < a >$ $\Rightarrow b^2 \in \langle a \rangle$ Since |b| = 4, $b^2 = a^2$. $G = \{b^j a^i | 0 \le i \le 3, 0 \le j \le 1\} \cong Q_8$ with identification $a \rightarrow i, \ b \rightarrow j, \ (ab)^2 = a^2 = b^2 \rightarrow -1, \ ab \rightarrow k.$ (7) |G| $12 = 2^2 \times 3$ =(a) (abelian) \Rightarrow $G \cong \mathbb{Z}_4 \times \mathbb{Z}_3, \ \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$ (b) (nonabelian) \Rightarrow Pick $\langle a \rangle \in Syl_3(G)$ Let G act on left coset of $\langle a \rangle$ in G. This gives a homomorphism $\phi: G \to S_4$ (since [G: < a >] = 4) and $\operatorname{Ker} \phi \subset \langle a \rangle$. Hence ker $\phi = \langle e \rangle$ or $\langle a \rangle$ (since $|\langle a \rangle| = 3$) If ker $\phi = \langle e \rangle$, then $G \cong \phi(G) = A_4$ by checking all subgroups of order 12 in S_4 . (In fact, A_4 is the only subgroup of S_4 of index 2 and $|S_4|/2 = |A_4| = 12$.) Suppose $\ker \phi = \langle a \rangle$. Then |G| < a > | = 4 and G| < a > is abelian.(In fact, any group with four elements is abelian.) Hence $G/ \langle a \rangle \cong \mathbb{Z}_4$ or $\mathbb{Z}_2 \times \mathbb{Z}_2$. Case 1: $G/ \langle a \rangle \cong \mathbb{Z}_4$. $G = \langle a \rangle$ $(j b \langle a \rangle) b^2 \langle a \rangle$ $(j b^3 \langle a \rangle), \text{ where } b^4 \in \langle a \rangle (*).$ If $b^4 = a, a^{-1}$, then |b| = 12, which contradicts to the fact that G is not abelian. Then $b^4 = e$ Since $\langle a \rangle \triangleleft G$, $bab^{-1} = a^{-1}$. (If $bab^{-1} = a$ then G is abelian by (*)) Hence $G \cong \langle a \rangle \rtimes \langle b \rangle$. Case 2: $G/\langle a \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ Then $G = \langle a \rangle \stackrel{\cdot}{\bigcup} b \langle a \rangle \stackrel{\cdot}{\bigcup} c \langle a \rangle \stackrel{\cdot}{\bigcup} bc \langle a \rangle$ where b^2 , c^2 , $(bc)^2 \in \langle a \rangle$.

If $b^2 = a$, a^{-1} then |b| = 6. If $b^2 = e$ and ab = ba then |ab| = 6. If $b^2 = e$ and $ab \neq ba$ then $bab^{-1} = a^{-1}$. Hence there exists $t \in G$ with |t| = 6unless $bab^{-1} = a^{-1}$, $cac^{-1} = a^{-1}$, $(bc)a(bc)^{-1} = a^{-1}$ and $b^2 = c^2 = (bc)^2 = e$. In this case, $a^{-1} = (bc)a(bc)^{-1} = b(cac^{-}) = ba^{-1}b^{-1} = (bab^{-1})^{-1} = a$, a contradiction. Since $[G : \langle t \rangle] = 2$, $\langle t \rangle \triangleleft G$. Pick $u \in G \setminus \langle t \rangle$. Then $G = \langle t \rangle$ $\bigcup u \langle t \rangle$, where $u^2 \in \langle t \rangle$. If $u^2 = t$ or t^{-1} then $G = \langle u \rangle$ is abelianm which is a contradiction. If $u^2 = t^3$ then $u^4 = t^6 = e$ and we have $G/\langle a \rangle = \langle u \langle a \rangle \geq \mathbb{Z}_4$, which is a contradiction. If $u^2 = t^2$ or t^4 , then |u| = 6 and $\langle u \rangle \triangleleft G$ Assume $u^2 = t^2$. Note that $utu^{-1}t^{-1} \neq e$ since G is not abelian. Hence $utu^{-1} = t^{-1}$ subce $|utu^{-1}| = |t^{-1}|$. and similarly $tut^{-1} = u^{-1}$ Then $u^2 = u(tu^{-1}t^{-1}) = t^{-2}$, which is a cntradiction. Similar for $u^2 = t^4$, we have another contradiction. Then $u^2 = e$ and $utu^{-1} = t^{-1}$ Hence $G \cong \langle t \rangle \rtimes \langle u \rangle$. With $t \to \sigma$, $u \to \tau$, we have $G \cong D_6$