2.8 Normal and subnormal series

Definition 1. $\langle e \rangle = G_n \triangleleft G_{n-1} \triangleleft G_{n-2} \triangleleft \cdots \triangleleft G_1 \triangleleft G_0 = G$ is called a subnormal series.

Warning: It is not necessary $G_i \triangleleft G$.

Definition 2. A subnormal series is solvable if $G_n = \langle e \rangle$ and G_i/G_{i+1} is abelian.

Theorem 1. G is solvable \Leftrightarrow G has a solvable subnormal series.

Proof. (\Rightarrow) Set $G_i = G^{(i)}$. Then $\langle e \rangle = G_n \triangleleft G_{n-1} \triangleleft \cdots \triangleleft G_0 = G$ and G_i/G_{i+1} is abelian.

(\Leftarrow) Suppose G has a solvable subnormal series, $\langle e \rangle = G_n \triangleleft G_{n-1} \triangleleft \cdots \triangleleft G_0 = G$. Since G_i/G_{i+1} is abelian, $G_{i+1} \ge G'_i \ge (G'_{i-1})' = G^{(2)}_{i-1} \cdots \ge G^{(i+1)}$. Hence $\langle e \rangle = G_n \ge G^{(n)}$ for some n.