5.2 Fundamental Theorem

Let $K \subseteq F$ be field extension. $G(F/K) = \{\sigma | \sigma : F \longrightarrow F \text{ is isomorphism}$ such that $\sigma(k) = k$ for all $k \in K\}$ is called the Galois group of F over K. Ex: $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}$

 $\sigma \epsilon G(\mathbb{Q}\sqrt{2}/\mathbb{Q}) \Rightarrow \sigma(\sqrt{2})\sigma(\sqrt{2}) = \sigma(2) = 2 \Rightarrow \sigma(\sqrt{2}) \text{ is a root of } x^2 - 2 = 0.$ Hence $\sigma(\sqrt{2}) = \pm\sqrt{2}, \sigma(\sqrt{2}) = \sqrt{2} \Rightarrow \sigma = 1.$ Then $G(\mathbb{Q}\sqrt{2}/\mathbb{Q}) = \{1, \sigma\},$ where $\sigma(a + b\sqrt{2}) = a - b\sqrt{2}.$

Note: $|G(K(\alpha)/K)| \leq \deg(\alpha, K)$ where $\deg(\alpha, K)$ is the degree of irreducible polynomial $f(x) \in K[x]$ with $f(\alpha) = 0$.

Ex: $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{2})$

 $\begin{array}{l} \sigma \epsilon G((\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) \Rightarrow \sigma(\sqrt[3]{2}) = \sqrt[3]{2}, \sqrt[3]{2}\omega, \sqrt[3]{2}\omega^2, \text{where } \omega = e^{\frac{2\pi}{3}i} \text{ . But } \sqrt[3]{2}\omega, \sqrt[3]{2}\omega^2 \notin \mathbb{Q}(\sqrt[3]{2}). \text{ Hence } G((\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) = \{1\}. \end{array}$

Def: Let $K \subseteq F \subseteq E$ be field extension, and $H \leq G(E/F)$. Define $F' = \{\sigma \epsilon G(E/K) | \sigma(k) = k \text{ for any } k \epsilon F \}$ and $H' = \{a \epsilon E | \sigma(a) = \text{ for all } \sigma \epsilon H \}$.

E is a Galois extension over *K* if G(E/K)' = K (denoted by $K \triangleleft E$).

Ex: $G((\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) = \{1\} \Rightarrow G((\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})' = \mathbb{Q}(\sqrt[3]{2}) \text{ (not a Galois extension).}$

Ex: $\mathbb{Q}(\sqrt{2})$ is a Galois extension over \mathbb{Q} . Since $G(\mathbb{Q}(\sqrt{2})/\mathbb{Q})' = \mathbb{Q}$. GaloisTheory

Suppose $K \triangleleft E$, Then we have the following diagram:

$$\begin{array}{c} E \longleftrightarrow < e > \\ F \longleftrightarrow F' \\ H' \longleftrightarrow H \\ \nabla \longleftrightarrow \Delta \end{array}$$

 $G(E/K)' = K \longrightarrow \widehat{G}(E/K)$

for any field F with $K \subseteq F \subseteq E$ and any $H \leq G(E/K)$.

In particular , there exists a H corresponding between subfields between K and E , and the subgroups of G(E/K).