5.5 Finite fields

Recall: The characteristic of a field F is the smallest positive integer n s.t. $n \cdot 1=1+1+\ldots+1=0$. If no such n, we say F has characteristic 0 Note:
(1) $\operatorname{Char}(F)=0$ or a prime p
(2) $\operatorname{Char}(F)=p \Rightarrow \mathbb{Z}_{p} \subseteq F$, where $\mathbb{Z}_{p}=\{0,1,2, \ldots, p-1\}$
(3) $\operatorname{Char}(F)=0 \Rightarrow \mathbb{Q} \subseteq F$

Recall:
$\operatorname{Char}(F)=0 \Rightarrow \mathbb{Q} \subseteq F$
$\operatorname{Char}(F)=p \Rightarrow \mathbb{Z}_{p} \subseteq F$
In particular if $|F|<\infty$ then $|F|=p^{n}$ where n is the dimension of F over \mathbb{Z}_{p}
Theorem. Let F be a field and $G \subseteq F-\{0\}$ be finite multiplication subgroup. Then G is cyclic.

Proof. Suppose G not cyclic. Then $G \cong \mathbb{Z}_{m_{1}} \times \mathbb{Z}_{m_{2}} \times \ldots \times \mathbb{Z}_{m_{k}}$, where $\left(m_{1}, m_{2}\right) \neq 1$ set $n=l c m\left(m_{1}, m_{2}\right)$.
Then $\mathbb{Z}_{m_{1}} \times \mathbb{Z}_{m_{2}} \times<e>\times<e>\times \ldots \subseteq\left\{\alpha \in G \mid \alpha^{n}=1\right\}$.
But the LHS has size $m_{1} m_{2}$, the RHS has size at most $n=l c m\left(m_{1}, m_{2}\right)$, a contradiction.
ex. $F=\mathbb{C}, G=\left\{\alpha \in \mathbb{C} \mid \alpha^{8}=1\right\}=\left\{\left.e^{\frac{2 \pi}{8} k i} \right\rvert\, k=0,1, \ldots 7\right\} \cong\left(\mathbb{Z}_{8},+\right)$ is cyclic.
ex. $\mathbb{Z}_{5}=\{0,1,2,3,4\}=\left\{0,2,2^{2}=4,2^{3}=3,2^{4}=1\right\}=\left\{0,3,3^{2}=4,3^{3}=\right.$ $\left.2,3^{4}=1\right\} \neq\left\{0,4,4^{2}=1,4^{3}=4,4^{4}=1\right\}$
ex. $\mathbb{Z}_{7} \neq\left\{0,2,2^{2}=4,2^{3}=1,2^{4}=2\right\}=\left\{0,3,3^{2}=2,3^{3}=6,3^{4}=4,3^{5}=\right.$ $\left.5,3^{6}=1\right\}$

Theorem. Let F be a field, then $|F|=p^{n} \Leftrightarrow F$ is a splitting field of $x^{p^{n}}-x$ over \mathbb{Z}_{p}

Proof. $\Leftarrow)$
Claim 1: $\mathbb{Z}_{p}\left(x^{p^{n}}-x\right)=\left\{\alpha \mid \alpha^{p^{n}}-\alpha=0\right\}$

Proof. (〇) Clear.
(\subseteq) It suffices to show $\left\{\alpha \mid \alpha^{p^{n}}-\alpha=0\right\}$ is a field. For $\alpha, \beta \in F^{\prime}, \beta \neq 0$, $(\alpha \pm \beta)^{p^{n}}=\alpha^{p^{n}} \pm \beta^{p^{n}}$ and $\left(\frac{\alpha}{\beta}\right)^{p^{n}}=\frac{\alpha^{p^{n}}}{\beta^{p^{n}}}=\frac{\alpha}{\beta}$ Hence F ' is a field.

Claim 2. $|F|=p^{n}$
Since $\frac{d x^{p^{n}-x}}{d x}=p^{n} x^{p^{n}-1}-1=0-1=-1$ is relative prime to $x^{p^{n}}-x, x^{p^{n}}-x$ has not repeated roots. Hence $F=\left\{\alpha \mid \alpha^{p^{n}}-\alpha=0\right\}$ has p^{n} elements.
ex. (Wilson's Theorem) Show $(p-1)!\equiv-1(\bmod p)$, where p is a prime.
Proof. In $\mathbb{Z}_{p},(p-1)!=\prod_{a \neq 0} a=\alpha^{1} \alpha^{2} \ldots \alpha^{p-1}=\alpha^{\frac{p(p-1)}{2}}=\alpha^{\frac{p-1}{2}} \neq-1$ where α is a multiplication generator of $U_{p}=\mathbb{Z}_{p}-\{0\}$. Note $\left(\alpha^{\frac{p-1}{2}}\right)^{2}=1$ Hence $\alpha^{\frac{p-1}{2}} \equiv-1(\bmod p)$
ex. Suppose $p=4 n+1$ is a prime. Then $x^{2} \equiv-1 \operatorname{modp}$ has a solution.
Proof. In $\mathbb{Z}_{p},-1=1 \times 2 \times 3 \times \ldots \times \frac{p-1}{2} \times \frac{p+1}{2} \times \ldots \times(p-1)=1 \times 2 \times \ldots \times$ $\frac{p-1}{2} \times(-1) \frac{p+1}{2} \times \ldots \times(-1)=\left(1 \times 2 \times \ldots \times \frac{p-1}{2}\right)^{2}$
Hence $\left(\frac{p-1}{2}\right)!$ is a solution of $x^{2} \equiv-1(\bmod p)$

