5.8 Cyclotomic extensions

Recording and typing by 9622534, Bin Yeh

Definition: $K\left(x^{n}-1\right)$ is called the cyclotomic extension of field K of order n. Note: If $\operatorname{char}(K)=p$ and $n=p m$, then $x^{n}-1=\left(x^{m}-1\right)^{p}$. Hence $K\left(x^{n}-1\right)=K\left(x^{m}-1\right)$.
We assume $\operatorname{char}(K) \nmid n$, including $\operatorname{char}(K)=0$.
Theorem: $K\left(x^{n}-1\right)=K(\alpha)$, where α is a primitive $n t h$ root of 1 , i.e. $\alpha^{n}=1$, $\alpha^{i} \neq 1 \forall 1 \leq i<n$.
proof:
(〇) It's clear to see.
$(\subseteq) 1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}$ are all distinct roots of $x^{n}-1$.
Definition: Let α be a primitive nth root of $1, K$ be a field, then $g_{n}(x)=\prod_{1 \leq i \leq n,(i, n)=1}\left(x-\alpha^{i}\right)$ is called the $n t h$ cyclotomic polynomial over K.
Example: Let $K=\mathbb{Q}$. We have

1. $g_{1}(x)=x-1$
2. $x^{2}-1=(x-1)(x+1)$, pick $\alpha=-1, g_{2}(x)=x-(-1)=x+1$.
3. $x^{3}-1=(x-1)\left(x-e^{2 / 3 \pi i}\right)\left(x-e^{4 / 3 \pi i}\right)$, pick $\alpha=e^{2 / 3} \pi i$, we have
$g_{3}(x)=(x-\alpha)\left(x-\alpha^{2}\right)=x^{2}+x+1$.
4. $x^{4}-1=(x+1)(x-1)(x-i)(x+i)$, pick $\alpha=i$, $g_{4}(x)=(x-i)\left(x-i^{3}\right)=x^{2}+1$.
Theorem: $x^{n}-1=\prod_{k \mid n} g_{k}(x)$
proof:
$x^{n}-1=\prod_{0 \leq i \leq n-1} x-\alpha^{i}$, where α is a primitive $n t h$ root of 1
$=\prod_{k \mid n}\left(\prod_{0 \leq i \leq n-1,(i, n)=k}\left(x-\alpha^{i}\right)\right)=\prod_{k \mid n}\left(\prod_{0 \leq \frac{i}{k} \leq \frac{n}{k}-1,\left(\frac{i}{k}, \frac{n}{k}\right)=1}\left(x-\alpha^{k}\right)^{\frac{i}{k}}\right)$, note that α^{k} is a primitive $\frac{n}{k}$ th root of 1
$=\prod_{k \mid n}\left(g_{\frac{n}{k}}(x)\right)=\prod_{k \mid n}\left(g_{k}(x)\right)$
Lemma: $g_{n}(x) \in K^{\prime}[x]$, where

$$
K^{\prime}= \begin{cases}\mathbb{Q}, & \text { if } \operatorname{char}(K)=0 \\ \mathbb{Z}_{p}, & \text { if } \operatorname{char}(K)=p\end{cases}
$$

proof: For any $\sigma \in G\left(K^{\prime}\left(x^{n}-1\right) / K^{\prime}\right), \sigma$ can be extended to an endomorphism on $K^{\prime}\left(x^{n}-1\right)[x]$ by sending x to x.
Then
$\sigma\left(g_{n}(x)\right)=\sigma\left(\prod_{1 \leq i \leq n,(i, n)=1}\left(x-\alpha^{i}\right)\right)=\prod_{1 \leq i \leq n,(i, n)=1}\left(x-\sigma\left(\alpha^{i}\right)\right)=g_{n}(x)$, hence $g_{n}(x) \in K^{\prime}[x]$.

