Definition: $K(x^n - 1)$ is called the *cyclotomic extension* of field K of order n. Note: If char(K) = p and n = pm, then $x^n - 1 = (x^m - 1)^p$. Hence $K(x^n - 1) = K(x^m - 1)$. We assume $char(K) \nmid n$, including char(K) = 0.

Theorem: $K(x^n - 1) = K(\alpha)$, where α is a primitive *nth* root of 1, i.e. $\alpha^n = 1$, $\alpha^i \neq 1 \ \forall 1 \leq i < n$.

proof:

 (\supseteq) It's clear to see.

 $(\subseteq)1, \alpha, \alpha^2, ..., \alpha^{n-1}$ are all distinct roots of $x^n - 1$.

Definition: Let α be a primitive *nth* root of 1, K be a field, then

 $g_n(x) = \prod_{1 \le i \le n, (i,n)=1} (x - \alpha^i)$ is called the *nth* cyclotomic polynomial over K. Example: Let $K = \mathbb{Q}$. We have

1. $g_1(x) = x - 1$ 2. $x^2 - 1 = (x - 1)(x + 1)$, pick $\alpha = -1$, $g_2(x) = x - (-1) = x + 1$. 3. $x^3 - 1 = (x - 1)(x - e^{2/3\pi i})(x - e^{4/3\pi i})$, pick $\alpha = e^{2/3}\pi i$, we have $g_3(x) = (x - \alpha)(x - \alpha^2) = x^2 + x + 1$. 4. $x^4 - 1 = (x + 1)(x - 1)(x - i)(x + i)$, pick $\alpha = i$, $g_4(x) = (x - i)(x - i^3) = x^2 + 1$.

Theorem: $x^n - 1 = \prod_{k|n} g_k(x)$

proof:

 $\begin{aligned} x^n - 1 &= \prod_{0 \le i \le n-1} x - \alpha^i, \text{ where } \alpha \text{ is a primitive } nth \text{ root of } 1 \\ &= \prod_{k|n} (\prod_{0 \le i \le n-1, (i,n)=k} (x - \alpha^i)) = \prod_{k|n} (\prod_{0 \le \frac{i}{k} \le \frac{n}{k} - 1, (\frac{i}{k}, \frac{n}{k}) = 1} (x - \alpha^k)^{\frac{i}{k}}), \text{ note that } \alpha^k \text{ is a primitive } \frac{n}{k} th \text{ root of } 1 \\ &= \prod_{k|n} (g_{\frac{n}{k}}(x)) = \prod_{k|n} (g_k(x)) \end{aligned}$

Lemma: $g_n(x) \in K'[x]$, where

$$K' = \left\{ \begin{array}{ll} \mathbb{Q}, & \text{if } char(K) = 0 \\ \mathbb{Z}_p, & \text{if } char(K) = p \end{array} \right.$$

proof: For any $\sigma \in G(K'(x^n-1)/K')$, σ can be extended to an endomorphism on $K'(x^n-1)[x]$ by sending x to x. Then

 $\begin{aligned} \sigma(g_n(x)) &= \sigma(\prod_{1 \le i \le n, (i,n)=1} (x - \alpha^i)) = \prod_{1 \le i \le n, (i,n)=1} (x - \sigma(\alpha^i)) = g_n(x), \\ \text{hence } g_n(x) \in K'[x]. \end{aligned}$