§ 9. Radical Extension

Recall: $a x^{2}+b x+c=0$ has roots $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
if characteristic of the field is not 2 .
Question: Can the roots of $a_{n} x_{n}+a_{n-1} x_{n-1}+\ldots+$
$a_{1} x+a_{0}=0$
be written as a form with only field operations and on the elements $a_{0}, a_{1}, \ldots, a_{n}$?

Definition 0.1. An extension field F of K is a radical
extension if $F=K\left(u_{1}, u_{2}, \ldots, u_{r}\right)$ for some r, where
$u_{i}^{n_{i}} \in K\left(u_{1}, u_{2}, \ldots, u_{i-1}\right)$ for $1 \leq i \leq r$.
Example 0.2. $\sqrt[7]{5+\sqrt[4]{6+\sqrt{2}}} \in Q(\sqrt{2}, \sqrt[4]{6+\sqrt{2}}$,
$\sqrt[7]{5+\sqrt[4]{6+\sqrt{2}}})$

Question: For a polynomial equation $x_{n}+a_{1} x_{n-1}+$ $\ldots+a_{n-1} x+a_{0}=0$, let K be a field containing $a_{1}, a_{2}, \ldots, a_{n}$. Does there a radical extension F that contains all roots of the polynomial equation?

Example 0.3. $x^{2}-2=0$ has roots $\pm \sqrt{2}$
$\pm \sqrt{2} \in Q(\sqrt{2})$, where $(\sqrt{2})^{2} \in Q$. Hence $Q(\sqrt{2})$ is radical extension of Q.

