5.9 Radical Extension Part II

Recall:

- **1.** For groups $N \triangleleft G$, G is solvable $\Leftrightarrow N, G/N$ are solvable.
- 2. Abelian groups are solvable.

Theorem: Let F be a radical extension of K, then G(F/K) is solvable.

sketch of proof:

- 1. $F' = K(\alpha)$, where α is a primitive *n*th root of 1 : $G(F'/K) \cong U_n$ is abelian and hence solvable.
- **2.** $F'' = K(\alpha)(f)$ where $f(x) = x^n a \in K[x]$ (roots of f(x) are $\sqrt[n]{a\alpha^i}$): It is immediate to check $G(F''/K(\alpha))$ abelian, then solvable.
- **3.** $G(F''/K(\alpha)) \subseteq G(F''/K), \ G(F''/k)/G(F''/K(\alpha)) \cong G(K(\alpha)/k)$ is solvable by 1.

By this 2. and **Recall** 2., we have G(F''/K) solvable.

By repeating 1.– 3., we have G(E/K) solvable for some E containing F.

4. $F \subseteq E \Rightarrow G(F/K) \subseteq G(E/K), G(E/K)$ solvable $\Rightarrow G(F/K)$ solvable