6/15part2

Recall:

(1) $\mathbb{Z}[i]:=\{a+b i \mid a, b \in \mathbb{Z}\}$ is a unique factorization domain
(2) The units in $\mathbb{Z}[i]$ are ± 1 and $\pm i$ (i.e. $a+b i$ with $a^{2}+b^{2}=1$)
ex:
$p \equiv 1(\bmod 4)$ is a prime.show p is not a prime in $\mathbb{Z}[i]$
pf:
we know $p=a^{2}+b^{2} \neq 1$ for some $a, b \in \mathbb{Z}$
Then $p=(a+b i)(a-b i)$ is not a prime.
ex:
$p \equiv 3(\bmod 4)$ is a prime.show p is a prime in $\mathbb{Z}[i]$
pf:
If $p=(a+b i)(c+d i)$ in $\mathbb{Z}[i]$, where $a^{2}+b^{2} \neq 1$ and $c^{2}+d^{2} \neq 1$
then $p^{2}=p \bar{p}=(a+b i)(c+d i) \overline{(a+b i)(c+d i)}=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)$
then $p=a^{2}+b^{2}=c^{2}+d^{2}$ a contradiction to $p \equiv 3(\bmod 4)$
ex:
$p=a^{2}+b^{2}=1(\bmod 4)$ is a prime
show that $a+b i, a-b i$ are primes in $\mathbb{Z}[i]$
pf:suppose $a+b i=\alpha \beta$ for some $\alpha \beta \in \mathbb{Z}[i]$ not units
then $p=a^{2}+b^{2}=(a+b i) \overline{(a+b i)}=\alpha \beta \bar{\alpha} \bar{\beta}=(\alpha \bar{\alpha}(\beta \bar{\beta}))$
is factored into the product for two integers> 1 a contradiction.
ex:
$n \in \mathbb{Z}$ then $n=a^{2}+b^{2}$ if and only if $n=2^{k} m^{2} p_{1} p_{2} \cdots p_{t}$
where $k, m, t \in \mathbb{N} \cup 0$ and $p_{i} \equiv 1(\bmod 4)$ are primes.
(\Leftarrow)
$2=1^{2}+1^{2}$
$m^{2}=m^{2}+0^{2}$
and $p_{i}=a_{i}^{2}+b_{i}^{2}$ for some $a, b \in \mathbb{Z}$
$n^{2}=a^{2}+b^{2}$ for some $a, b \in \mathbb{Z}$
(\Rightarrow)
It suffices to show each prime $p \equiv 3(\bmod 4)$ appears even times in n as factorization in \mathbb{Z} we have $n=(a+b i) \overline{(a+b i)}$
since p is a prime in $\mathbb{Z}[i]$ the number it appears in $a+b i$ is the same as it appears in $\overline{a+b i}$.

