6/15part2

Recall:

- (1) $\mathbb{Z}[i] := \{a + bi | a, b \in \mathbb{Z}\}$ is a unique factorization domain
- (2) The units in $\mathbb{Z}[i]$ are ± 1 and $\pm i$ (*i.e.a* + bi with $a^2 + b^2 = 1$)

ex: $p \equiv 1 \pmod{4}$ is a prime show p is not a prime in $\mathbb{Z}[i]$ pf: we know $p = a^2 + b^2 \neq 1$ for some $a, b \in \mathbb{Z}$ Then p = (a + bi)(a - bi) is not a prime. ex: $p \equiv 3 \pmod{4}$ is a prime show p is a prime in $\mathbb{Z}[i]$ pf: If p = (a + bi)(c + di) in $\mathbb{Z}[i]$, where $a^2 + b^2 \neq 1$ and $c^2 + d^2 \neq 1$ then $p^2 = p\overline{p} = (a+bi)(c+di)\overline{(a+bi)(c+di)} = (a^2+b^2)(c^2+d^2)$ then $p = a^2 + b^2 = c^2 + d^2$ a contradiction to $p \equiv 3 \pmod{4}$ ex: $p = a^2 + b^2 = 1 \pmod{4}$ is a prime show that a + bi, a - bi are primes in $\mathbb{Z}[i]$ pf:suppose $a + bi = \alpha\beta$ for some $\alpha\beta \in \mathbb{Z}[i]$ not units then $p = a^2 + b^2 = (a + bi)\overline{(a + bi)} = \alpha\beta\overline{\alpha}\overline{\beta} = (\alpha\overline{\alpha}(\beta\beta))$ is factored into the product for two integers > 1 a contradiction. ex: $n \in \mathbb{Z}$ then $n = a^2 + b^2$ if and only if $n = 2^k m^2 p_1 p_2 \cdots p_t$ where $k, m, t \in \mathbb{N} \cup 0$ and $p_i \equiv 1 \pmod{4}$ are primes. (\Leftarrow) $2 = 1^2 + 1^2$ $m^2 = m^2 + 0^2$ and $p_i = a_i^2 + b_i^2$ for some $a, b \in \mathbb{Z}$ $n^2 = a^2 + b^2$ for some $a, b \in \mathbb{Z}$ (\Rightarrow)

It suffices to show each prime $p \equiv 3 \pmod{4}$ appears even times in n as factorization in \mathbb{Z} we have $n = (a + bi)\overline{(a + bi)}$

since p is a prime in $\mathbb{Z}[i]$ the number it appears in a + bi is the same as it appears in $\overline{a + bi}$.