
Fundamental Theorem of Algebra 
 

Lemma： [ ] 2: ≠CF  for any field  containing . F C
 

     Suppose  :pf [ ] 2: =CF
         Then )(αCF =  with an irreducible polynomial  [ ]xCcbxxxf ∈++= 2)(
         s.t. 0)( =αf . 
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22 cbbxcbbxxf  is not irreducible. 

 

Theorem (FTA)：If , then  has a root in . [ ]xCxf ∈)( )(xf C
:pf Consider field extension . )( fCCR ⊆⊆

    We want to prove . )( fCC ⊆
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    Let H ′  be the fixed field of  .H
     

     
Hence  is odd. [ RH :′ ]
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    Since any polynomial of odd degree over R  has a root in R , on 
field extension of R  with odd dimension. 

    Hence RH =′ . 
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    By Sylow 1st theorem, there exist ⎟
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    Then [ ] 2: =′ CT , a contradiction to previous lemma. 
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