Fundamental Theorem of Algebra

Lemma $:[F: C] \neq 2$ for any field F containing C.

$$
p f: \text { Suppose }[F: C]=2
$$

Then $F=C(\alpha)$ with an irreducible polynomial $f(x)=x^{2}+b x+c \in C[x]$
s.t. $f(\alpha)=0$.

But $f(x)=\left(x-\frac{-b+\sqrt{b^{2}-4 c}}{2}\right) \cdot\left(x-\frac{-b-\sqrt{b^{2}-4 c}}{2}\right)$ is not irreducible.

Theorem (FTA) : If $f(x) \in C[x]$, then $f(x)$ has a root in C.
$p f:$ Consider field extension $R \subseteq C \subseteq C(f)$.
We want to prove $C \subseteq C(f)$.
Since $[C(f): R]$ is even, 2 divides $G\left(\frac{C(f)}{R}\right)$.
Pick $H \in \operatorname{Syl}_{2}\left(G\left(\frac{C(f)}{R}\right)\right)$.
Let H^{\prime} be the fixed field of H.

Hence $\left[H^{\prime}: R\right]$ is odd.

Since any polynomial of odd degree over R has a root in R, on field extension of R with odd dimension.

Hence $H^{\prime}=R$.
Hence $H=G\left(\frac{C(f)}{R}\right)$.
Then $\left|G\left(\frac{C(f)}{R}\right)\right|=2^{n}$ for some $n \in N$.
Note $G\left(\frac{C(f)}{C}\right) \subseteq G\left(\frac{C(f)}{R}\right)$.
Hence $\left|G\left(\frac{C(f)}{C}\right)\right|=2^{m}$ for some $1 \leq m \leq n$.

By Sylow $1^{\text {st }}$ theorem, there exist $T<G\left(\frac{C(f)}{C}\right)$ with $|T|=2^{m-1}$. Then $\left[T^{\prime}: C\right]=2$, a contradiction to previous lemma.

