Fundamental Theorem of Algebra

Lemma: $[F:C] \neq 2$ for any field F containing C.

pf: Suppose [F:C] = 2Then $F = C(\alpha)$ with an irreducible polynomial $f(x) = x^2 + bx + c \in C[x]$ s.t. $f(\alpha) = 0$. But $f(x) = \left(x - \frac{-b + \sqrt{b^2 - 4c}}{2}\right) \cdot \left(x - \frac{-b - \sqrt{b^2 - 4c}}{2}\right)$ is not irreducible.

Theorem (FTA): If $f(x) \in C[x]$, then f(x) has a root in C.

pf : Consider field extension $R \subseteq C \subseteq C(f)$. We want to prove $C \subseteq C(f)$.

Since [C(f):R] is even, 2 divides $G\left(\frac{C(f)}{R}\right)$.

Pick
$$H \in Syl_2\left(G\left(\frac{C(f)}{R}\right)\right)$$

Let H' be the fixed field of H.

Hence [H':R] is odd.

Since any polynomial of odd degree over R has a root in R, on field extension of R with odd dimension.

Hence
$$H' = R$$
.
Hence $H = G\left(\frac{C(f)}{R}\right)$.
Then $\left|G\left(\frac{C(f)}{R}\right)\right| = 2^n$ for some $n \in N$.
Note $G\left(\frac{C(f)}{C}\right) \subseteq G\left(\frac{C(f)}{R}\right)$.
Hence $\left|G\left(\frac{C(f)}{C}\right)\right| = 2^m$ for some $1 \le m \le n$.

By Sylow 1st theorem, there exist $T < G\left(\frac{C(f)}{C}\right)$ with $|T| = 2^{m-1}$. Then [T':C] = 2, a contradiction to previous lemma.