Solution for Homework 10 part 2, problem 3 to 6
3. (Normalizer grows in p-group) Let $|G|=p^{n}$ where p is a prime, $H<G$ and $H \neq G$. Show that $H \neq N_{G}(H)$.

Solution:

By p. 94 Corollary5.6 : H is a p-subgroup of a finite group G such that p divides $[G: H]$, then $N_{G}(H) \neq H$.
$|G|=p^{n}<\infty \Rightarrow$
(i) If $n=1,|G|=p$, by Lagrange Theorem, $|H|=1$ or p, but $H \neq G$ $\Rightarrow H=\{e\}$. Hence, $N_{G}(H)=G \neq\{e\}=H$.
(ii) If $n>1,|G|=p^{n}$, by Lagrange Theorem, H is a p-subgroup of G.
$[G: H]=\frac{|G|}{|H|}=p^{t}$ for some $t \in \mathbb{N}$. By Corollary 5.6, $N_{G}(H) \neq H$.

Teacher:

H acts left coset of $H \Rightarrow[G: H]=\left[N_{G}(H): H\right]+\sum_{H_{p_{i}} \neq H} \frac{|H|}{\left|H p_{p_{i}}\right|}$
(since $g \cdot t H=t H, \forall g \in H \Leftrightarrow t^{-1} g t \in H \Leftrightarrow t^{-1} H t=H \Leftrightarrow t \in N_{G}(H)$.
For $t_{1}, t_{2} \in N_{G}(H)$ such that $\left.t_{1} H=t_{2} H \Leftrightarrow t_{2}^{-1} t_{1} \in H\right)$
4. Suppose $|G|=p^{n}$ and $<e>\neq H \triangleleft G$. Show that $H \cap Z(G) \neq<e>$.

Solution:

Define a group action of G on $H, g * h=g h g^{-1}, \forall g \in G$ and $h \in H$.
First, we have to check this is the group action of G on H. (since $H \triangleleft G$) (i) $e * h=e h e^{-1}=h$, for $h \in H$.
(ii) $\left(g_{1} g_{2}\right) * h=\left(g_{1} g_{2}\right) h\left(g_{1} g_{2}\right)^{-1}=g_{1}\left(g_{2} h g_{2}^{-1}\right) g_{1}-1=g_{1} *\left(g_{2} * h\right)$

Second, for $|H|=\sum_{i, h_{i} \in H}\left|O_{h_{i}}\right|=\sum_{i, h_{i} \in H} 1+\sum_{\left|O_{h_{i}}\right| \neq 1}\left|O_{h_{i}}\right|$

$$
\left|O_{h_{i}}\right|=1
$$

$$
\Leftrightarrow O_{h_{i}}=\left\{g * h_{i} \mid g * h_{i}=h_{i}\right\}
$$

$$
\Leftrightarrow O_{h_{i}}=\left\{g * h_{i} \mid h_{i}=g * h_{i}=g h_{i} g^{-1}, \forall g \in G, \text { and } h_{i} \in H\right\}
$$

$$
\Leftrightarrow O_{h_{i}}=\left\{g * h_{i} \mid g h_{i}=h_{i} g, \forall g \in G\right\}
$$

$$
\Leftrightarrow h_{i} \in Z(G)
$$

So, $|H|=\sum_{i, h_{i} \in Z(G) \cap H} 1+\sum_{\left|O_{h_{i}}\right| \neq 1}\left|O_{h_{i}}\right|$

Since $H<G$, by Lagrange Theorem, $|H|\left||G|=p^{n}\right.$, so $| H \mid=p^{t}, 1<t<n$.
This implies, $p\left||H|=\sum_{h_{i} \in Z(G) \cap H} 1+\sum_{\left|O_{h_{i}}\right| \neq 1}\right| O_{h_{i}} \left\lvert\,=\sum_{h_{i} \in Z(G) \cap H} 1+\sum_{\left|O_{h_{i}}\right| \neq 1} \frac{|G|}{\left|G_{h_{i}}\right|}\right.$
, where $|G|=p^{n},\left|G_{h_{i}}\right|=p^{\alpha_{n}}$.
So , $p \mid \sum_{h_{i} \in Z(G) \cap H} 1$
Thus, $H \cap Z(G) \neq<e>$
5. Let $|G|=p^{n}$. Show that for each $0 \leq k \leq n, G$ has a normal subgroup of order p^{k}.

Solution:

$n=1$, it is trivial.
Suppose it is true for $|G|=p^{i}, i<n$
Let G act on G by conjugation.
$|G|=|Z(G)|+\sum_{i, G_{\rho_{i}} \neq G} \frac{|G|}{\left|G_{\rho_{i}}\right|}, p \mid Z(G)$
By Cauchy Theorem, $\exists a \in Z(G),|a|=p,<a>\triangleleft G$
$\varphi: G \rightarrow G /<a>,|G|<a>\mid=p^{n-1}$, by induction hypothesis,
$\forall k, 0 \leq k \leq n-1, \exists F, F \triangleleft G /<a>,|F|=p^{k}$
Claim: $\varphi^{-1}(F) \triangleleft G$, i,e, $a \varphi^{-1}(F) a^{-1} \subseteq \varphi^{-1}(F)$
Take $h \in \varphi^{-1}(F), \varphi\left(a h a^{-1}\right)=\varphi(a) \varphi(h)(\varphi(a))^{-1} \in F, \Rightarrow a h a^{-1} \in \varphi^{-1}(F)$
$\varphi^{-1}(F) \triangleleft G,\left|\varphi^{-1}(F)\right|=p^{k} p=p^{k+1}=p^{s}, 1 \leq s \leq n$
When $s=0,\{e\} \triangleleft G$.
6. Let H be a normal subgroup of order p^{k} of a finite group G. Show that H is contained in every Sylow p-subgroup of G.

Solution:

For any $G^{\prime} \in \operatorname{Sylp}(G), S=\left\{g G^{\prime} \mid g \in G\right\}, h \circ S=h g G^{\prime}$
$p \nmid \frac{|G|}{\left|G^{\prime}\right|}=\sum_{\left|O_{\rho_{i}}\right|=1} 1+\sum_{\left|O_{\rho_{i}}\right| \neq 1} \frac{|H|}{\left|H g_{i}\right|}\left(|H|=p^{k}\right)$
$\exists g_{i} \in G$ such that $h g_{i} G^{\prime}=g_{i} G^{\prime}, \forall h \in H \Rightarrow g_{i}^{-1} h g_{i} G^{\prime}=G^{\prime}, \forall h \in H$
$\therefore g_{i}^{-1} h g_{i} \in G^{\prime}, \forall h \in H \Rightarrow g_{i}^{-1} H g_{i} \subseteq G^{\prime}$.
$\because H$ is normal $\therefore g_{i}^{-1} H g_{i}=H \Rightarrow H \subseteq G^{\prime}$.

