進階代數(下) 第十一次作業

上課老師: 翁志文

2009年五月四日

- 1. (林育生) If $H \in Syl_p(G)$ and $H \triangleleft G$, then $Syl_p(G) = \{H\}$.
- 2. (黃彥璋) If $|G| = p^n q$, with p > q primes, then G contains a unique normal Sylow subgroup of index q.
- 3. (林志嘉) Every group of order 12, 28, 56, and 200 must contain a normal Sylow subgroup, and hence is not simple.
- 4. (陳建文) How many elements of order 7 are there in a simple group of order 168?
- 5. (a) (羅健峰) Every group G of order p^n (p a prime) has nontrivial center.
 - (b) (黃思綸) Every group G of order p^2 (p a prime) is abelian.
- 6. (a) (陳泓勳) The transpositions $(1,2), (2,3), \ldots, (n,n+1)$ generate the symmetric group \mathbf{S}_{n+1} .
 - (b) (何昕暘) Construct an epimorphism from the Coxeter group W associated with P_n to the group **L** generated by lit-only moves in P_n as described in homework 1.
 - (c) (賴德展) Let S_i denote the lit-only move associated with $i \in P_n$, interpreted as an $n \times n$ matrix over \mathbb{Z}_2 . Let $e_1 = (1, 0, 0, \dots, 0)^t$. Set $S = \{e_1, S_1e_1, S_2S_1e_1, \dots, S_nS_{n-1} \cdots S_1e_1\}$. Let $\mathbf{L} = \langle S_1, S_2, \dots, S_n \rangle$ denote the subgroup generated by S_i for $1 \leq i \leq n$. Find an action of \mathbf{L} on S.
 - (d) (劉命欣) Find a homomorphism of **L** into S_{n+1} corresponding to the above action.
 - (e) (周彥伶) *Determine the Coxeter group associated with P_3 .