```
Homework 11
1.H \in Sylp(G)
H \triangleleft G
H', H \in Sylp(G)
H' = g^{-1}Hg = H for some g \in G
Sylp(G) = H
2.|Sylp(G)| = kp + 1 for some k
|Sylp(G)| \ ||G||
\Rightarrow kp + 1|p^nq
|Sylp(G)| = 1
say H \in Sylp(G)
\text{claim:} \forall g, g^{-1}Hg \in H
|g^{-1}Hg| = |H|
g^{-1}Hg \in Sylp(G)
by uniqueness we have g^{-1}Hg = H
3.(1)|G| = 12 = 2^2 \cdot 3
|Syl_3(G)| = 3k + 1|4 \Rightarrow |Syl_3(G)| = 1 \text{ or } 4
Case 1: |Syl_3(G)| = 1, say H \in Syl_3(G) \Rightarrow H \triangleleft G
Case 2: |Syl_3(G)| = 4
Note: If P, Q \in Syl_3(G) and P \neq Q \Rightarrow P \cap Q = \langle e \rangle
\exists 4(3-1) = 8 \text{ elements}
The remaining 12 - 8 = 4 elements from a unique 2-Sylow subgroup K
\Rightarrow K \triangleleft G
\therefore it is not simple.
(2)|G| = 28 = 2^2 \cdot 7
|Syl_7(G)| = 7k + 1 \mid 4 \Rightarrow |Syl_7(G)| = 1
Say H \in Syl_7(G) \Rightarrow H \triangleleft G \Rightarrow it is not simple.
(3)|G| = 56 = 2^3 \cdot 7
|Syl_7(G)| = 7k + 1|8 \Rightarrow |Syl_7(G)| = 1 \text{ or } 8
Case 1: |Syl_7(G)| = 1, say H \in Syl_7(G) \Rightarrow H \triangleleft G
Case 2: |Syl_7(G)| = 8
Note: If P, Q \in Syl_7(G) and P \neq Q \Rightarrow P \cap Q = \langle e \rangle
\exists 8(7-1) = 48 elements
The remaining 56 - 48 = 8 elements from a unique 2-Sylow subgroup K
\Rightarrow K \triangleleft G
: it is not simple.
(4)|G| = 200 = 2^3 \cdot 5^2
|Syl_5(G)| = 5k + 1 | 8 \Rightarrow |Syl_5(G)| = 1
Say H \in Syl_5(G) \Rightarrow H \triangleleft G \Rightarrow it is not simple.
4.
Let G be a simple group of order 168. 
 .: |G|=2^3\cdot 2\cdot 7
Now we consider the number of Sylow 7-subgroups
By Sylow's Third Theorem
|Syl_7(G)| \equiv 1 \mod 7 and |Syl_7(G)| |24
Hence |Syl_7(G)| \equiv 1 or 8
\therefore G is a simple group \therefore |Syl(G)| = 8
Thus, there are 8 distinct cyclic subgroup H_i in G of order 7 for i \in \{1, 2, \dots, 8\}
H_i \cap H_j = \{e\} for any i, j \in \{1, 2, \dots, 8\} and i \neq j
\therefore There are 48 elements of order 7 in G.
```